Vẽ đồ thị biểu diễn li độ của dao động điều hoà trên đoạn [0; 2T] trong mỗi trường

Một dao động điều hoà có phương trình li độ dao động là: x = Acos(ωt + φ), trong đó A, φ, ω là các hằng số (ω > 0). Khi đó, chu kì T của dao động là \(T = \frac{{2\pi }}{\omega }\).

Vẽ đồ thị biểu diễn li độ của dao động điều hoà trên đoạn [0; 2T] trong mỗi trường hợp sau:

A = 3 và φ = 0;                A = 3 và \(\varphi = - \frac{\pi }{2}\);                 A = 3 và \(\varphi = \frac{\pi }{2}\).

Trả lời

Từ \(T = \frac{{2\pi }}{\omega }\) ta có \(\omega = \frac{{2\pi }}{T}\).

Khi đó ta có phương trình li độ là \(x = A\cos \left( {\frac{{2\pi }}{T}.t + \varphi } \right)\).

* Với A = 3 và φ = 0 thay vào phương trình li độ \(x = A\cos \left( {\frac{{2\pi }}{T}.t + \varphi } \right)\) ta có:

\(x = 3\cos \left( {\frac{{2\pi }}{T}.t} \right)\).

• t = 0 thì x = 3cos0 = 3;

\(t = \frac{T}{4}\) thì \(x = 3\cos \left( {\frac{{2\pi }}{T}.\frac{T}{4}} \right) = 3\cos \frac{\pi }{2} = 0\);

\(t = \frac{T}{2}\) thì \(x = 3\cos \left( {\frac{{2\pi }}{T}.\frac{T}{2}} \right) = 3\cos \pi = - 3\)

\(t = \frac{{3T}}{4}\) thì \(x = 3\cos \left( {\frac{{2\pi }}{T}.\frac{{3T}}{4}} \right) = 3\cos \frac{{3\pi }}{2} = 0\);

• t = T thì \(x = 3\cos \left( {\frac{{2\pi }}{T}.T} \right) = 3\cos 2\pi = 3\)  

‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà \(x = 3\cos \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; 2T]:

Xét hàm số \(x = 3\cos \left( {\frac{{2\pi }}{T}.t} \right)\) có chu kì là T.

Ta vẽ đồ thị hàm số \(x = 3\cos \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; T] theo bảng sau:

Vẽ đồ thị biểu diễn li độ của dao động điều hoà trên đoạn [0; 2T] trong mỗi trường  (ảnh 1)

Bằng cách dịch chuyển đồ thị hàm số \(x = 3\cos \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; T] song song với trục hoành sang phải theo đoạn có độ dài T, ta sẽ nhận được đồ thị hàm số \(x = 3\cos \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [T; 2T].

Từ đó ta vẽ được đồ thị biểu diễn li độ của dao động điều hoà \(x = 3\cos \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; 2T] như sau:

Vẽ đồ thị biểu diễn li độ của dao động điều hoà trên đoạn [0; 2T] trong mỗi trường  (ảnh 2)

* Với A = 3 và \(\varphi = - \frac{\pi }{2}\) thay vào phương trình li độ \(x = A\cos \left( {\frac{{2\pi }}{T}.t + \varphi } \right)\) ta có:

\(x = 3\cos \left( {\frac{{2\pi }}{T}.t - \frac{\pi }{2}} \right)\)\[ = 3\cos \left( {\frac{\pi }{2} - \frac{{2\pi }}{T}.t} \right) = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\]

• t = 0 thì \(x = 3\sin \left( {\frac{{2\pi }}{T}.0} \right) = 3\sin 0 = 0\)

\(t = \frac{T}{4}\) thì \(x = 3\sin \left( {\frac{{2\pi }}{T}.\frac{T}{4}} \right) = 3\sin \frac{\pi }{2} = 3\);

\(t = \frac{T}{2}\) thì \(x = 3\sin \left( {\frac{{2\pi }}{T}.\frac{T}{2}} \right) = 3\sin \pi = 0\);

\(t = \frac{{3T}}{4}\) thì \[x = 3\sin \left( {\frac{{2\pi }}{T}.\frac{{3T}}{4}} \right) = 3\sin \frac{{3\pi }}{2} = - 3\];

• t = T thì \[x = 3\sin \left( {\frac{{2\pi }}{T}.T} \right) = 3\sin 2\pi = 0\].

‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà \(x = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; 2T]:

Xét hàm số \(x = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) có chu kì là T.

Ta vẽ đồ thị hàm số \(x = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; T] theo bảng sau:

Vẽ đồ thị biểu diễn li độ của dao động điều hoà trên đoạn [0; 2T] trong mỗi trường  (ảnh 3)

Bằng cách dịch chuyển đồ thị hàm số \(x = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; T] song song với trục hoành sang phải theo đoạn có độ dài T, ta sẽ nhận được đồ thị hàm số \(x = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [T; 2T].

Từ đó ta vẽ được đồ thị biểu diễn li độ của dao động điều hoà \(x = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; 2T] như sau:

Vẽ đồ thị biểu diễn li độ của dao động điều hoà trên đoạn [0; 2T] trong mỗi trường  (ảnh 4)

* Với A = 3 và \(\varphi = \frac{\pi }{2}\) thay vào phương trình li độ \(x = A\cos \left( {\frac{{2\pi }}{T}.t + \varphi } \right)\) ta có:

\[x = 3\cos \left( {\frac{{2\pi }}{T}.t + \frac{\pi }{2}} \right) = - 3\cos \left[ {\pi - \left( {\frac{{2\pi }}{T}.t + \frac{\pi }{2}} \right)} \right]\]

    \( = - 3\cos \left( {\frac{\pi }{2} - \frac{{2\pi }}{T}.t} \right) = - 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\).

• t = 0 thì \(x = - 3\sin \left( {\frac{{2\pi }}{T}.0} \right) = - 3\sin 0 = 0\)

\(t = \frac{T}{4}\) thì \[x = 3\sin \left( {\frac{{2\pi }}{T}.\frac{T}{4}} \right) = - 3\sin \frac{\pi }{2} = - 3\];              

\(t = \frac{T}{2}\) thì \(x = - 3\sin \left( {\frac{{2\pi }}{T}.\frac{T}{2}} \right) = - 3\sin \pi = 0\);

\(t = \frac{{3T}}{4}\) thì \[x = - 3\sin \left( {\frac{{2\pi }}{T}.\frac{{3T}}{4}} \right) = - 3\sin \frac{{3\pi }}{2} = 3\];

• t = T thì \[x = - 3\sin \left( {\frac{{2\pi }}{T}.T} \right) = - 3\sin 2\pi = 0\].

‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà \(x = - 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; 2T]:

Đồ thị hàm số \(x = - 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) là hình đối xứng với đồ thị hàm số \(x = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) qua trục hoành:

Vẽ đồ thị biểu diễn li độ của dao động điều hoà trên đoạn [0; 2T] trong mỗi trường  (ảnh 5)

Câu hỏi cùng chủ đề

Xem tất cả