Câu hỏi:
19/01/2024 75
Từ danh sách gồm 9 học sinh của lớp 10A, bầu ra một ủy ban gồm một chủ tịch, một phó chủ tịch, một thư kí và một ủy viên. Hỏi có bao nhiêu khả năng cho kết quả bầu ủy ban này?
Từ danh sách gồm 9 học sinh của lớp 10A, bầu ra một ủy ban gồm một chủ tịch, một phó chủ tịch, một thư kí và một ủy viên. Hỏi có bao nhiêu khả năng cho kết quả bầu ủy ban này?
A. 84;
A. 84;
B. 126;
B. 126;
C. 3 024;
D. 6 561.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Mỗi cách chọn 4 học sinh trong 9 học sinh để bầu ra một ban gồm một chủ tịch, một phó chủ tịch, một thư kí và một ủy viên là một chỉnh hợp chập 4 của 9 phần tử.
Do đó số khả năng có thể về kết quả bầu uỷ ban này là: .
Vậy ta chọn phương án C.
Hướng dẫn giải
Đáp án đúng là: C
Mỗi cách chọn 4 học sinh trong 9 học sinh để bầu ra một ban gồm một chủ tịch, một phó chủ tịch, một thư kí và một ủy viên là một chỉnh hợp chập 4 của 9 phần tử.
Do đó số khả năng có thể về kết quả bầu uỷ ban này là: .
Vậy ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một tổ học sinh có 5 nam và 5 nữ xếp thành một hàng dọc thì số các cách xếp khác nhau là:
Một tổ học sinh có 5 nam và 5 nữ xếp thành một hàng dọc thì số các cách xếp khác nhau là:
Câu 2:
Có bao nhiêu số lẻ có 4 chữ số khác nhau được lập thành từ các chữ số 1; 2; 5; 6; 9?
Có bao nhiêu số lẻ có 4 chữ số khác nhau được lập thành từ các chữ số 1; 2; 5; 6; 9?
Câu 3:
Có bao nhiêu cách chọn và sắp xếp thứ tự 5 cầu thủ để đá luân lưu, biết rằng cả 11 cầu thủ đều có khả năng như nhau?
Có bao nhiêu cách chọn và sắp xếp thứ tự 5 cầu thủ để đá luân lưu, biết rằng cả 11 cầu thủ đều có khả năng như nhau?
Câu 4:
Trong một bình đựng 4 viên bi đỏ và 3 viên bi xanh. Lấy ngẫu nhiên 2 viên bi. Có bao nhiêu cách lấy được 2 viên bi cùng màu?
Trong một bình đựng 4 viên bi đỏ và 3 viên bi xanh. Lấy ngẫu nhiên 2 viên bi. Có bao nhiêu cách lấy được 2 viên bi cùng màu?
Câu 5:
Có ba môn thi Toán, Vật lí, Hóa học cần xếp vào 3 buổi thi, mỗi buổi một môn sao cho môn Toán không thi buổi đầu thì số cách xếp là:
Có ba môn thi Toán, Vật lí, Hóa học cần xếp vào 3 buổi thi, mỗi buổi một môn sao cho môn Toán không thi buổi đầu thì số cách xếp là:
Câu 6:
Một lớp có 30 học sinh. Hỏi có bao nhiêu cách chọn 3 học sinh để làm vệ sinh lớp học trong một ngày?
Một lớp có 30 học sinh. Hỏi có bao nhiêu cách chọn 3 học sinh để làm vệ sinh lớp học trong một ngày?
Câu 7:
Trong một trường có 4 học sinh giỏi lớp 12, 3 học sinh giỏi lớp 11 và 5 học sinh giỏi lớp 10. Cần chọn 5 học sinh giỏi để tham gia một cuộc thi với các trường khác sao cho khối 12 có 3 em và mỗi khối 10, 11 có đúng 1 em. Vậy số tất cả các cách chọn là:
Trong một trường có 4 học sinh giỏi lớp 12, 3 học sinh giỏi lớp 11 và 5 học sinh giỏi lớp 10. Cần chọn 5 học sinh giỏi để tham gia một cuộc thi với các trường khác sao cho khối 12 có 3 em và mỗi khối 10, 11 có đúng 1 em. Vậy số tất cả các cách chọn là: