Trong mặt phẳng tọa độ Oxy, phương trình đường tròn (C') là ảnh của đường tròn qua

Trong mặt phẳng tọa độ Oxy, phương trình đường tròn (C')  là ảnh của đường tròn qua (C): x2 + y2 – 2x + 4y – 1 = 0 với \(\overrightarrow v = \left( {1;2} \right)\) là:

A. \({\left( {x + 2} \right)^2} + {y^2} = \sqrt 6 \)

B. \({\left( {x - 2} \right)^2} + {y^2} = 6\)

C. x2 + y2 – 2x – 5 = 0

D. 2x2 + 2y2 – 8x + 4 = 0.

Trả lời

Đáp án đúng là: B

Theo tính chất của phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính.

Ta có đường tròn (C)  có tâm I(1; −2), bán kính \(R = \sqrt 6 \)

Với phép tịnh tiến theo \(\overrightarrow v = \left( {1;2} \right)\) thì ta có \(\left\{ \begin{array}{l}x' = x + 1\\y' = y + 2\end{array} \right.\)

Suy ra \[{T_{\overrightarrow v }}\left( I \right) = I'\left( {2;0} \right)\]

Vậy đường tròn (C')  có tâm I'(2;0), bán kính \(R' = R = \sqrt 6 \) có phương trình \({\left( {x - 2} \right)^2} + {y^2} = 6\), ta chọn đáp án B.

Câu hỏi cùng chủ đề

Xem tất cả