Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tọa độ trung điểm các cạnh BC, AC, AB lần

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tọa độ trung điểm các cạnh BC, AC, AB lần lượt là M(2; 1), N(5; 3), P(3; –4). Phương trình đường thẳng BC là

A. 5x + y – 28 = 0;

B. 7x + 2y – 12 = 0;

C. 7x – 2y – 12 = 0;

D. 2x – 3y – 18 = 0.

Trả lời

Hướng dẫn giải:

Đáp án đúng là: C

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tọa độ trung điểm các cạnh BC, AC, AB lần  (ảnh 1)

Với N(5; 3) P(3; –4), ta có: NP=2;7.

Xét ∆ABC có N, P lần lượt là trung điểm của AC, AB nên NP là đường trung bình của tam giác. Do đó NP // BC.

Khi đó đường thẳng BC nhận NP=2;7 làm một vectơ chỉ phương nên có một vectơ pháp tuyến là n=7;2.

Đường thẳng BC đi qua M(2; 1) và có vectơ pháp tuyến n=7;2. nên có phương trình là:

7(x – 2) – 2(y – 1) = 0 tức là 7x – 2y – 12 = 0.

Đường thẳng AC song song với đường thẳng MP nên phương trình đường thẳng AC đi qua N và có vectơ pháp tuyến n2=5;1 là:

5(x – 5) + 1(y – 3) = 0 tức là 5x + y – 28 = 0.

Đường thẳng BC song song với đường thẳng MN nên phương trình đường thẳng BC đi qua P và có vectơ pháp tuyến n3=2;3 là:

2(x – 3) – 3(y + 4) = 0 tức là 2x – 3y – 18 = 0.

Câu hỏi cùng chủ đề

Xem tất cả