Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có M(2; 0) là trung điểm của cạnh AB. Đường trung tuyến và đường
6
16/11/2024
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có M(2; 0) là trung điểm của cạnh AB. Đường trung tuyến và đường cao từ đỉnh A có phương trình lần lượt là: 7x – 2y – 3 = 0 và 6x – y – 4 = 0. Phương trình đường thẳng AC là
C. 3x – 4y + 5 = 0;
D. 3x + 4y – 5 = 0;
Trả lời
Hướng dẫn giải:
Đáp án đúng là: C
⦁ Gọi AH và AD lần lượt là các đường cao và trung tuyến kẻ từ A của tam giác ABC.
Tọa độ điểm A là nghiệm của hệ phương trình:
Do đó A(1; 2).
Vì M là trung điểm của AB nên: Do đó B(3; –2).
⦁ Ta có AH ⊥ BC nên vectơ chỉ phương của AH là vectơ pháp tuyến của BC.
Đường thẳng AH: 6x – y – 4 = 0 có nên
Đường thẳng BC đi qua B(3; –2) và nhận làm một vectơ pháp tuyến nên có phương trình là: 1(x – 3) + 6(y + 2) = 0 hay x + 6y + 9 = 0.
⦁ D là giao điểm của BC và AD nên tọa độ điểm D là nghiệm của hệ phương trình:
Do đó
Mà D là trung điểm của BC nên suy ra: Do đó C(–3; –1).
⦁ Với A(1; 2) và C(–3; –1) ta có suy ra
Đường thẳng AC đi qua A(1; 2) và nhận làm một vectơ pháp tuyến nên có phương trình là: 3(x – 1) – 4(y – 2) = 0 tức là 3x – 4y + 5 = 0.