Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: x – y + 3 = 0 và đường tròn (C): (x + 1)^2 + (y + 2)^2 = 9
75
18/03/2024
Thực hành 1 trang 17 Chuyên đề Toán 11: Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: x – y + 3 = 0 và đường tròn (C): (x + 1)2 + (y + 2)2 = 9.
a) Tìm ảnh của đường thẳng d qua ĐOy.
b) Tìm ảnh của đường tròn (C) qua ĐOx.
Trả lời
a) Trục Oy: x = 0.
Thế x = 0 vào phương trình d, ta được 0 – y + 3 = 0 ⇔ y = 3.
Suy ra giao điểm của d và Oy là P(0; 3).
Chọn điểm M(1; 4) ∈ d: x – y + 3 = 0
Ta đặt M’ = ĐOy(M).
Suy ra Oy là đường trung trực của MM’ hay M’ là điểm đối xứng với M qua Oy.
Do đó hai điểm M và M’ có cùng tung độ và có hoành độ đối nhau.
Vì vậy tọa độ điểm M’(–1; 4).
Ta có .
Gọi d’ là ảnh của d qua ĐOy.
Đường thẳng d’ có vectơ chỉ phương .
Suy ra d’ có vectơ pháp tuyến .
Vậy đường thẳng d’ đi qua P(0; 3) và có vectơ pháp tuyến nên phương trình d’ là: 1.(x – 0) + 1.(y – 3) = 0 hay x + y – 3 = 0.
b) Đường tròn (C) có tâm I(–1; –2), bán kính R = 3.
Ta đặt I’ = ĐOx(I).
Suy ra Ox là đường trung trực của II’ hay I’ đối xứng với I qua Ox
Do đó hai điểm I và I’ có cùng hoành độ và có tung độ đối nhau.
Vì vậy tọa độ điểm I’(–1; 2).
Gọi (C’) là ảnh của đường tròn (C) qua ĐOx.
Suy ra (C’) có tâm I’(–1; 2), bán kính R’ = R = 3.
Vậy phương trình đường tròn (C’): (x + 1)2 + (y – 2)2 = 9.
Xem thêm các bài giải Chuyên đề Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Phép biến hình và phép dời hình
Bài 2: Phép tịnh tiến
Bài 3: Phép đối xứng trục
Bài 4: Phép đối xứng tâm
Bài 5: Phép quay
Bài 6: Phép vị tự