Câu hỏi:
30/01/2024 43
Trong mặt phẳng tọa độ, cho hai đường thẳng
∆1: a1x + b1y + c1 = 0; ∆2: a2x + b2y + c2 = 0,
với các vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {{a_1};\,\,b{ & _1}} \right)\) và \(\overrightarrow {{n_2}} = \left( {{a_2};\,\,b{ & _2}} \right)\) tương ứng. Khi đó góc φ giữa hai đường thẳng đó được xác định bởi công thức
Trong mặt phẳng tọa độ, cho hai đường thẳng
∆1: a1x + b1y + c1 = 0; ∆2: a2x + b2y + c2 = 0,
với các vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {{a_1};\,\,b{ & _1}} \right)\) và \(\overrightarrow {{n_2}} = \left( {{a_2};\,\,b{ & _2}} \right)\) tương ứng. Khi đó góc φ giữa hai đường thẳng đó được xác định bởi công thức
A. \(\cos \varphi = \cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right) = \frac{{\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} }}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = \frac{{{a_1}{a_2} + {b_1}{b_2}}}{{\sqrt {a_1^2 + b_1^2} \cdot \sqrt {a_2^2 + b_2^2} }}\);
A. \(\cos \varphi = \cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right) = \frac{{\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} }}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = \frac{{{a_1}{a_2} + {b_1}{b_2}}}{{\sqrt {a_1^2 + b_1^2} \cdot \sqrt {a_2^2 + b_2^2} }}\);
B. \(\cos \varphi = - \left| {\cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right)} \right| = - \frac{{\left| {\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = - \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {a_1^2 + b_1^2} \cdot \sqrt {a_2^2 + b_2^2} }}\);
B. \(\cos \varphi = - \left| {\cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right)} \right| = - \frac{{\left| {\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = - \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {a_1^2 + b_1^2} \cdot \sqrt {a_2^2 + b_2^2} }}\);
C. \(\cos \varphi = \left| {\cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {a_1^2 + b_1^2} \cdot \sqrt {a_2^2 + b_2^2} }}\);
C. \(\cos \varphi = \left| {\cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {a_1^2 + b_1^2} \cdot \sqrt {a_2^2 + b_2^2} }}\);
D. \(\cos \varphi = \left| {\cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {a_1^2 + a_2^2} \cdot \sqrt {b_1^2 + b_2^2} }}\).
D. \(\cos \varphi = \left| {\cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {a_1^2 + a_2^2} \cdot \sqrt {b_1^2 + b_2^2} }}\).
Trả lời:
Đáp án C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Hà dự định làm một khung ảnh hình chữ nhật sao cho phần trong của khung là hình chữ nhật có kích thước 7 cm × 13 cm, độ rộng viền xung quanh là x cm (như hình vẽ). Diện tích của viền khung ảnh không vượt quá 44 cm2. Hỏi độ rộng viền khung ảnh lớn nhất là bao nhiêu xen-ti-mét?
Hà dự định làm một khung ảnh hình chữ nhật sao cho phần trong của khung là hình chữ nhật có kích thước 7 cm × 13 cm, độ rộng viền xung quanh là x cm (như hình vẽ). Diện tích của viền khung ảnh không vượt quá 44 cm2. Hỏi độ rộng viền khung ảnh lớn nhất là bao nhiêu xen-ti-mét?
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(3; – 1) và B(– 6; 2). Phương trình nào sau đây không phải là phương trình tham số của đường thẳng AB?
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(3; – 1) và B(– 6; 2). Phương trình nào sau đây không phải là phương trình tham số của đường thẳng AB?
Câu 5:
Cho hàm số dưới dạng bảng như sau:
x
0
1
2
3
4
y
0
1
4
9
16
Giá trị của hàm số y tại x = 1 là
Cho hàm số dưới dạng bảng như sau:
x |
0 |
1 |
2 |
3 |
4 |
y |
0 |
1 |
4 |
9 |
16 |
Giá trị của hàm số y tại x = 1 là
Câu 6:
Góc giữa hai đường thẳng a: 6x – 5y + 15 = 0 và b: \(\left\{ \begin{array}{l}x = 10 - 6t\\y = 1 + 5t\end{array} \right.\) bằng
Góc giữa hai đường thẳng a: 6x – 5y + 15 = 0 và b: \(\left\{ \begin{array}{l}x = 10 - 6t\\y = 1 + 5t\end{array} \right.\) bằng
Câu 9:
Viết phương trình tổng quát của đường thẳng
đi qua M(– 1; – 4) và song song với đường thẳng 3x + 5y – 2 = 0;
Viết phương trình tổng quát của đường thẳng
đi qua M(– 1; – 4) và song song với đường thẳng 3x + 5y – 2 = 0;
Câu 10:
Cho tam thức bậc hai f(x) = ax2 + bx + c, (a ≠ 0) và ∆ = b2 – 4ac. Mệnh đề nào sau đây đúng?
Cho tam thức bậc hai f(x) = ax2 + bx + c, (a ≠ 0) và ∆ = b2 – 4ac. Mệnh đề nào sau đây đúng?
Câu 12:
Cho hàm số bậc hai f(x) = – 2x2 – x + 1. Giá trị lớn nhất của hàm số là
Cho hàm số bậc hai f(x) = – 2x2 – x + 1. Giá trị lớn nhất của hàm số là
Câu 14:
Cho hàm số bậc hai có bảng biến thiên như sau:
Công thức hàm số bậc hai trên là
Cho hàm số bậc hai có bảng biến thiên như sau:
Công thức hàm số bậc hai trên là
Câu 15:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: – x + 2y + 7 = 0. Vectơ pháp tuyến của đường thẳng d là
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: – x + 2y + 7 = 0. Vectơ pháp tuyến của đường thẳng d là