Câu hỏi:
18/12/2023 76
Trong khai triển (3x – y)7 số hạng chứa x4y3 là:
Trong khai triển (3x – y)7 số hạng chứa x4y3 là:
A. – 2835x4y3;
A. – 2835x4y3;
B. 2835x4y3;
B. 2835x4y3;
C. 945x4y3;
D. – 945x4y3;
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Ta có công thức số hạng tổng quát trong khai triển (a + b)n là an – k .bk (k ≤ n)
Thay a = 3x, b = - y vào trong công thức ta có
(3x)7 – k .(- y)k = (- 1)k(3x)7 – k .(y)k
Số hạng cần tìm chứa x4y3 nên ta có x7 – kyk = x4y3
Vậy k = 3 thoả mãn bài toán
Khi đó hệ số cần tìm là (- 1)3(3)7 – 3x4 y3 = - 2835x4 y3
Hướng dẫn giải
Đáp án đúng là: A
Ta có công thức số hạng tổng quát trong khai triển (a + b)n là an – k .bk (k ≤ n)
Thay a = 3x, b = - y vào trong công thức ta có
(3x)7 – k .(- y)k = (- 1)k(3x)7 – k .(y)k
Số hạng cần tìm chứa x4y3 nên ta có x7 – kyk = x4y3
Vậy k = 3 thoả mãn bài toán
Khi đó hệ số cần tìm là (- 1)3(3)7 – 3x4 y3 = - 2835x4 y3
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho các số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau
Cho các số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau
Câu 3:
Lớp 10A có 20 học sinh nam và 25 học sinh nữ. Thầy giáo có bao nhiêu cách chọn ra hai học sinh để thi đấu cầu lông đôi nam nữ.
Lớp 10A có 20 học sinh nam và 25 học sinh nữ. Thầy giáo có bao nhiêu cách chọn ra hai học sinh để thi đấu cầu lông đôi nam nữ.
Câu 4:
Lớp 10A có 20 học sinh nữ và 15 học sinh nam. Thầy giáo có bao nhiêu cách chọn ra một học sinh tham gia đội xung kích của trường
Lớp 10A có 20 học sinh nữ và 15 học sinh nam. Thầy giáo có bao nhiêu cách chọn ra một học sinh tham gia đội xung kích của trường
Câu 5:
Trong một hộp có 7 viên bi đỏ, 5 viên bi trắng và 6 viên bi xanh. Chọn ngẫu nhiên ra 4 viên bi. Có bao nhiêu cách để chọn được số bi có đủ 3 màu và chọn được 2 viên bi xanh.
Trong một hộp có 7 viên bi đỏ, 5 viên bi trắng và 6 viên bi xanh. Chọn ngẫu nhiên ra 4 viên bi. Có bao nhiêu cách để chọn được số bi có đủ 3 màu và chọn được 2 viên bi xanh.
Câu 6:
Cho các số 1; 2; 3; 4; 5; 6; 7. Có bao nhiêu số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng chữ số 3
Cho các số 1; 2; 3; 4; 5; 6; 7. Có bao nhiêu số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng chữ số 3
Câu 7:
Có 10 quả cầu đỏ được đánh số từ 1 đến 10, 7 quả cầu xanh được đánh số từ 1 đến 7 và 8 quả cầu vàng được đánh số từ 1 đến 8. Hỏi có bao nhiêu cách lấy ra 3 quả cầu khác màu và khác số.
Có 10 quả cầu đỏ được đánh số từ 1 đến 10, 7 quả cầu xanh được đánh số từ 1 đến 7 và 8 quả cầu vàng được đánh số từ 1 đến 8. Hỏi có bao nhiêu cách lấy ra 3 quả cầu khác màu và khác số.
Câu 8:
Có bao nhiêu đoạn thẳng được tạo thành từ 10 điểm phân biệt khác nhau
Có bao nhiêu đoạn thẳng được tạo thành từ 10 điểm phân biệt khác nhau
Câu 9:
Tên 15 học sinh được ghi vào 15 tờ giấy để vào trong hộp. Có bao nhiêu cách chọn tên 4 học sinh để cho đi du lịch
Tên 15 học sinh được ghi vào 15 tờ giấy để vào trong hộp. Có bao nhiêu cách chọn tên 4 học sinh để cho đi du lịch
Câu 10:
Cho các số 1; 2; 3; 4; 5; 6; 7; 8 có thể lập được bao nhiêu số tự nhiên lẻ gồm 5 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.
Cho các số 1; 2; 3; 4; 5; 6; 7; 8 có thể lập được bao nhiêu số tự nhiên lẻ gồm 5 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.
Câu 11:
Trong các số nguyên từ 100 đến 999, số các số mà các chữ số của nó tăng dần hoặc giảm dần (kể từ trái qua phải) bằng:
Trong các số nguyên từ 100 đến 999, số các số mà các chữ số của nó tăng dần hoặc giảm dần (kể từ trái qua phải) bằng:
Câu 12:
Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ đứng xen kẽ:
Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ đứng xen kẽ:
Câu 13:
Từ 2 chữ số 1 và 8 lập được bao nhiêu số tự nhiên có 8 chữ số sao cho không có 2 chữ số 1 đứng cạnh nhau?
Từ 2 chữ số 1 và 8 lập được bao nhiêu số tự nhiên có 8 chữ số sao cho không có 2 chữ số 1 đứng cạnh nhau?
Câu 14:
Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài sao cho sách Văn phải xếp kề nhau và sách Toán xếp kề nhau?
Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài sao cho sách Văn phải xếp kề nhau và sách Toán xếp kề nhau?