Câu hỏi:

03/04/2024 31

Trên đường tròn đặt 24 điểm cách đều nhau sao cho độ dài cung giữa 2 điểm kề nhau đều bằng 1. Chọn ngẫu nhiên 8 trong 24 điểm đó. Tính xác suất sao cho trong 8 điểm được chọn không có 2 điểm nào có độ dài cung bằng 8 hoặc 3.

A. C178C248

B. 258C248

Đáp án chính xác

C. 1548C248

D. 112C248

Trả lời:

verified Giải bởi Vietjack

Chọn B

Số phần tử không gian mẫu 

Gọi biến cố A = “Chọn 8 điểm sao cho không có 2 điểm nào có độ dài cung bằng 8 hoặc 3”.

Chia 24 điểm của đường tròn thành bảng sau:

1

9

17

4

12

20

7

15

23

10

18

2

13

21

5

16

24

8

19

3

11

22

6

14

 

Trong đó, mỗi cột là tập các số có cùng số dư khi chia 3, mỗi hàng là tập các số có cùng số dư khi chia 8. Nhận thấy, mỗi cột không được chọn quá 4 số vì chọn từ 5 số trở lên, sẽ xuất hiện 2 số kề nhau tạo cung có độ dài là 3.

TH1: Chọn 4 số của cột 1 không kề nhau: 2 cách là {1;7;13;19} hoặc {4;10;16;22}

1

9

17

4

12

20

7

15

23

10

18

2

13

21

5

16

24

8

19

3

11

22

6

14

 

Tiếp theo, chọn 4 số a,b,c,d còn lại không nằm cùng hàng với 4 số của cột 1 và 2 số bất kỳ trong 4 số a,b,c,d cũng không được cùng hàng với nhau, có 24 cách chọn.

Vậy có 2.24= 32cách.

TH2: Chọn 3 số của cột 1 sao cho không có 2 số nào kề nhau:

VD chọn{1;7;16} thì 5 số còn lai sẽ thuộc 3 nhóm màu trắng như hình vẽ. Khi đó mỗi nhóm màu trắng trong bảng chỉ có 2 cách chọn. Do đó TH2 có 16.2.2.2=128 cách.

 

TH3: Chọn 2 số không kề nhau của cột 1: C82 - 8 = 20

 

Khi đó, 6 hàng ngang còn lai chia làm 2 nhóm màu trắng như hình vẽ. Mỗi nhóm có đúng 2 cách chọn nên có 20.2.2 = 80 cách.

 

TH4: Chọn 1 số của cột 1 có 8 cách

Vd chọn số 1, thì cột 2 và 3 chỉ có 2 lựa chọn sao cho chúng đan xen là các dòng xanh hoặc trắng. Vậy có 8.2=16 cách.

TH5: Chỉ chọn cột 2 với 3. Ta có 2 cách chọn là các dòng xanh hoặc trắng: 2 cách.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Người ta sắp xếp ngẫu nhiên 5 viên bi được đánh số từ 1 đến 5 vào năm chiếc hộp theo một hàng ngang. Tính xác suất để các viên bi được đánh số chẵn luôn đứng cạnh nhau.

Xem đáp án » 03/04/2024 104

Câu 2:

Có 3 quyển sách Văn học khác nhau, 4 quyển sách Toán học khác nhau và 7 quyển sách Tiếng Anh khác nhau được xếp lên một kệ ngang. Tính xác suất để hai cuốn sách cùng môn không ở cạnh nhau

Xem đáp án » 03/04/2024 90

Câu 3:

Sắp xếp 5 quyển sách Toán và 4 quyển sách Văn lên một kệ sách dài. Tính xác suất để các quyển sách cùng một môn nằm cạnh nhau.

Xem đáp án » 03/04/2024 75

Câu 4:

Xếp ngẫu nhiên 5 bạn An, Bình, Cường, Dũng, Đông ngồi vào một dãy 5 ghế thẳng hàng (mỗi bạn ngồi 1 ghế). Xác suất của biến cố “hai bạn An và Bình không ngồi cạnh nhau” là:

Xem đáp án » 03/04/2024 72

Câu 5:

Có 2  học sinh lớp A, 3 học sinh lớp B và 4 học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh lớp B. Hỏi có bao nhiêu cách sắp xếp như vậy? 

Xem đáp án » 03/04/2024 69

Câu 6:

Xếp ngẫu nhiên tám học sinh gồm bốn học sinh nam (trong đó có Hoàng và Nam) cùng bốn học sinh nữ (trong đó có Lan) thành một hàng ngang. Xác suất để trong tám học sinh trên không có hai học sinh cùng giới đứng cạnh nhau, đồng thời Lan đứng cạnh Hoàng và Nam là

Xem đáp án » 03/04/2024 67

Câu 7:

Có 3 quyển sách toán, 4 quyển sách lí và 5 quyển sách hóa khác nhau được sắp xếp ngẫu nhiên lên một giá sách gồm có 3 ngăn, các quyển sách được sắp dựng đứng thành một hàng dọc vào một trong ba ngăn (mỗi ngăn đủ rộng để chứa tất cả quyển sách). Tính xác suất để không có bất kì hai quyển sách toán nào đứng cạnh nhau.

Xem đáp án » 03/04/2024 64

Câu 8:

Có hai dãy ghế đối diện nhau, mỗi dãy có bốn ghế. Xếp ngẫu nhiên 8 học sinh, gồm 4 nam và 4 nữ, ngồi vào hai dãy ghế sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ và không có hai học sinh cùng giới ngồi cạnh nhau bằng

Xem đáp án » 03/04/2024 58

Câu 9:

Xếp chỗ cho 6 học sinh trong đó có học sinh A và 3 thầy giáo vào 9 ghế kê thành hàng ngang (mỗi ghế xếp một người). Tính xác suất sao cho mỗi thầy giáo ngồi giữa 2 học sinh và học sinh A ngồi ở một trong hai đầu hàng.

Xem đáp án » 03/04/2024 55

Câu 10:

Đội thanh niên xung kích của một trường THPT gồm 15 học sinh trong đó có 4 học sinh khối 12, 5 học sinh khối 11 và 6 học sinh khối 10. Chọn ngẫu nhiên ra 6 học sinh đi làm nhiệm vụ. Tính xác suất để chọn được 6 học sinh đủ 3 khối.

Xem đáp án » 03/04/2024 55

Câu 11:

Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh lớp A, 3 học sinh lớp B và 5 học sinh lớp C thành một hàng ngang. Xác suất để không có học sinh lớp B nào xếp giữa hai học sinh lớp A bằng

Xem đáp án » 03/04/2024 55

Câu 12:

Một hộp chứa 10 quả cầu đỏ được đánh số từ 1 đến 10, 20 quả cầu xanh được đánh số từ 1 đến 20. Lấy ngẫu nhiên một quả. Khi đó xác suất để lấy được quả màu xanh hoặc ghi số lẻ bằng

Xem đáp án » 03/04/2024 54

Câu 13:

Bạn Nam làm bài thi thử THPT Quốc gia môn Toán có 50 câu, mỗi câu có 4 đáp án khác nhau, mỗi câu đúng được 0,2 điểm, mỗi câu làm sai hoặc không làm không được điểm cũng không bị trừ điểm. Bạn Nam đã làm đúng được 40 câu còn 10 câu còn lại bạn chọn ngẫu nhiên mỗi câu một đáp án. Xác suất để bạn Nam được trên điểm gần với số nào nhất trong các số sau?

Xem đáp án » 03/04/2024 53

Câu 14:

Một hộp chứa 15 quả cầu đỏ được đánh số từ 1 đến 15, 20 quả cầu xanh được đánh số từ 1 đến 20. Lấy ngẫu nhiên đồng thời hai quả. Khi đó xác suất để hai quả cầu lấy được đều màu đỏ hoặc đều ghi số chẵn bằng

Xem đáp án » 03/04/2024 53

Câu 15:

Một hộp kín chứa 50 quả bóng kích thước bằng nhau, được đánh số từ 1 đến 50. Bốc ngẫu nhiên cùng lúc 2 quả bóng từ hộp trên. Gọi P là xác suất bốc được 2 quả bóng có tích của 2 số ghi trên  2quả bóng là một số chia hết cho 10, khẳng định nào sau đây đúng?

Xem đáp án » 03/04/2024 43