Câu hỏi:
29/12/2023 138Tìm m để hai đường thẳng d1 và d2 vuông góc với nhau:
\[{d_1}:\left\{ \begin{array}{l}x = - 1 + mt\\y = - 2 - 2t\end{array} \right.\] và \[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + \left( {4 + m} \right)t'\end{array} \right.\].
A. m = \( - 2 + \sqrt 2 \);
B. m = \( - 2 - \sqrt 2 \);
C. m = 2;
D. không tồn tại m.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Đường thẳng \[{d_1}:\left\{ \begin{array}{l}x = - 1 + mt\\y = - 2 - 2t\end{array} \right.\]có VTCP là \(\overrightarrow {{u_1}} = \left( {m; - 2} \right)\);
Đường thẳng \[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + \left( {4 + m} \right)t'\end{array} \right.\] có VTCP là \(\overrightarrow {{u_2}} = \left( { - 2;4 + m} \right)\).
Để hai đường thẳng d1 và d2 vuông góc với nhau thì \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) không cùng phương và \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0 \Leftrightarrow \left\{ \begin{array}{l}\frac{m}{{ - 2}} \ne \frac{{ - 2}}{{4 + m}}\\m.\left( { - 2} \right) + 2.\left( {4 + m} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 4m - 4 \ne 0\\ - 2m + 8 + 2m = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m \ne - 2 + 2\sqrt 2 ,m \ne - 2 - 2\sqrt 2 \\8 = 0\end{array} \right.\)
Vậy không tồn tại m thỏa mãn yêu cầu bài toán.
Hướng dẫn giải
Đáp án đúng là: D
Đường thẳng \[{d_1}:\left\{ \begin{array}{l}x = - 1 + mt\\y = - 2 - 2t\end{array} \right.\]có VTCP là \(\overrightarrow {{u_1}} = \left( {m; - 2} \right)\);
Đường thẳng \[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + \left( {4 + m} \right)t'\end{array} \right.\] có VTCP là \(\overrightarrow {{u_2}} = \left( { - 2;4 + m} \right)\).
Để hai đường thẳng d1 và d2 vuông góc với nhau thì \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) không cùng phương và \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0 \Leftrightarrow \left\{ \begin{array}{l}\frac{m}{{ - 2}} \ne \frac{{ - 2}}{{4 + m}}\\m.\left( { - 2} \right) + 2.\left( {4 + m} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 4m - 4 \ne 0\\ - 2m + 8 + 2m = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m \ne - 2 + 2\sqrt 2 ,m \ne - 2 - 2\sqrt 2 \\8 = 0\end{array} \right.\)
Vậy không tồn tại m thỏa mãn yêu cầu bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1; 2); B(0; 3) và C(4; 0). Chiều cao của tam giác kẻ từ đỉnh A bằng:
Câu 2:
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.
Câu 3:
Tính góc tạo bởi giữa hai đường thẳng: \[{d_1}\]: 2x – y – 3 = 0 và \[{d_2}\]: x – 3y + 8 = 0
Câu 4:
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: x – 2y + 2 = 0 và \[{d_2}\]: – 3x + 6y – 10 = 0
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: x – 2y + 2 = 0 và \[{d_2}\]: – 3x + 6y – 10 = 0
Câu 5:
Khoảng cách từ giao điểm của đường thẳng x – 3y + 4 = 0 và 2x + 3y – 1 = 0 đến đường thẳng \[\Delta \]: 3x + y + 3 = 0 bằng:
Câu 6:
Tính góc tạo bởi giữa hai đường thẳng:
\[{d_1}:2x + 2\sqrt 3 y + 4 = 0\]và \({d_2}\): y – 4 = 0
Tính góc tạo bởi giữa hai đường thẳng:
\[{d_1}:2x + 2\sqrt 3 y + 4 = 0\]và \({d_2}\): y – 4 = 0
Câu 7:
Tính góc tạo bởi giữa hai đường thẳng: \[{d_1}:x + \sqrt 3 y + 6 = 0\] và \({d_2}\): x + 1 = 0
Câu 8:
Tìm giá trị âm của m để góc tạo bởi giữa hai đường thẳng \[{d_1}\]: 7x – 3y + 2 = 0 và \[{d_2}\]: 2x + 5my +1 = 0 bằng 45°.
Câu 9:
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x – 2y – 3 = 0 và \[{d_2}\]: 6x – 2y – 8 = 0
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x – 2y – 3 = 0 và \[{d_2}\]: 6x – 2y – 8 = 0
Câu 10:
Khoảng cách từ điểm M( –1; 1) đến đường thẳng \[\Delta \]: 3x – 4y – 3 = 0 bằng:
Câu 11:
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M\left( {{x_0};{y_0}} \right)\) và đường thẳng \(\Delta \): ax + by + c = 0. Khoảng cách từ điểm M đến \(\Delta \) được tính bằng công thức: