Câu hỏi:
19/12/2023 74
Tập xác định của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 1}}\) là:
Tập xác định của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 1}}\) là:
A. [–1; +∞);
B. ℝ \ {–1};
C. (–∞; –1];
D. ℝ.
Đáp án chính xác
Trả lời:
Giải bởi Vietjack
Hướng dẫn giải:
Đáp án đúng là: D.
Điều kiện xác định của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 1}}\) là: x2 + 1 ≠ 0 ⇔ x2 ≠ –1
Mà x2 ≥ 0 với mọi số thực x, do đó, x2 ≠ –1 với mọi số thực x.
Vậy tập xác định của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 1}}\) là D = ℝ.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Tập giá trị của hàm số: \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) là:
Tập giá trị của hàm số: \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) là:
Xem đáp án »
19/12/2023
131
Câu 5:
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Tìm tập giá trị của hàm số.
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Xem đáp án »
19/12/2023
115
Câu 7:
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Tìm tập xác định của hàm số.
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Tìm tập xác định của hàm số.
Xem đáp án »
19/12/2023
101
Câu 11:
Hàm số v = f(t) được cho bởi bảng như sau:
Tìm tập xác định của hàm số này.
Hàm số v = f(t) được cho bởi bảng như sau:
Tìm tập xác định của hàm số này.
Xem đáp án »
19/12/2023
84