Câu hỏi:
29/12/2023 104Trong hệ tọa độ Oxy cho ba điểm A (1; 3) ; B (– 1; 2) ; C (– 2 ; 1) . Tìm tọa độ của vectơ \[\overrightarrow {AB} - \overrightarrow {AC} \].
A. (– 5; – 3);
B. (1; 1);
C. (– 1; 2);
D. (– 1; 1).
Trả lời:
Hướng dẫn giải
Đáp án đúng là : B
Ta có \[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( { - 2; - 1} \right)\\\overrightarrow {AC} = \left( { - 3; - 2} \right)\end{array} \right.\] \[ \Rightarrow \]\[\overrightarrow {AB} - \overrightarrow {AC} \] = (– 2 – (– 3); – 1 – (– 2)) = (1; 1).
Hướng dẫn giải
Đáp án đúng là : B
Ta có \[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( { - 2; - 1} \right)\\\overrightarrow {AC} = \left( { - 3; - 2} \right)\end{array} \right.\] \[ \Rightarrow \]\[\overrightarrow {AB} - \overrightarrow {AC} \] = (– 2 – (– 3); – 1 – (– 2)) = (1; 1).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.
Câu 2:
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?
Câu 3:
Trong hệ tọa độ Oxy cho tam giác ABC có A (6 ; 1), B (–3 ; 5) và trọng tâm G (–1 ;1). Tìm tọa độ đỉnh C?
Câu 4:
Khoảng cách từ giao điểm của đường thẳng x – 3y + 4 = 0 và 2x + 3y – 1 = 0 đến đường thẳng \[\Delta \]: 3x + y + 3 = 0 bằng:
Câu 5:
Trong hệ tọa độ Oxy cho tam giác ABC có B (9 ; 7), C (11 ; –1). Gọi M, N lần lượt là trung điểm của AB, AC. Tìm tọa độ vectơ \[\overrightarrow {MN} \]?
Câu 7:
Viết phương trình tham số của đường thẳng d đi qua điểm M(6; –10) và vuông góc với trục Oy?
Câu 8:
Trong hệ tọa độ Oxy cho ba điểm A (–1 ; 1), B (1 ; 3), C (–1; 4) , D(1; 0). Khẳng định nào sau đây đúng?
Câu 9:
Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng đi qua hai điểm A(a; 0) và B(0; b)?
Câu 10:
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x – 2y – 3 = 0 và \[{d_2}\]: 6x – 2y – 8 = 0
Câu 11:
Trong hệ tọa độ Oxy cho ba điểm A(3; 5), B(1; 2), C(5; 2) và D(m ; n) . Tính m + n để ACDB là hình bình hành.
Câu 12:
Phương trình đường thẳng cắt hai trục tọa độ tại A(– 2 ; 0) và B(0 ; 4) là:
Câu 13:
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).
Câu 14:
Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{x^2} + {y^2} + 4x + 4y - 17 = 0\],
biết tiếp tuyến vuông góc đường thẳng d: 3x – 4y – 2018 = 0.