Tính giá trị của biểu thức A  = ( x^2 - 4/y^2)( x - 2y)x^2 - 4xy  +  4y^2 tại x = 98 và y = 1. A. 99 B. 100 C. 199 D. 96

Tính giá trị của biểu thức\[{\rm{A = }}\frac{{\left( {{{\rm{x}}^{\rm{2}}} - {\rm{4}}{{\rm{y}}^{\rm{2}}}} \right)\left( {{\rm{x}} - {\rm{2y}}} \right)}}{{{{\rm{x}}^{\rm{2}}} - {\rm{4xy + 4}}{{\rm{y}}^{\rm{2}}}}}\] tại x = 98 và y = 1.
A. 99
B. 100
C. 199
D. 96

Trả lời

Lời giải

Đáp án đúng là: B

\[A = \frac{{\left( {{x^2} - 4{y^2}} \right)\left( {x - 2y} \right)}}{{{x^2} - 4xy + 4{y^2}}} = \frac{{\left( {x - 2y} \right)\left( {x + 2y} \right)\left( {x - 2y} \right)}}{{{{\left( {x - 2y} \right)}^2}}}\]

\[ = \frac{{{{\left( {x - 2y} \right)}^2}\left( {x + 2y} \right)}}{{{{\left( {x - 2y} \right)}^2}}}{\rm{ }} = x + 2y\].

Tại x = 98 và y = 1 ta có\[{\rm{A}} = 98 + 2.1 = 100\].

Câu hỏi cùng chủ đề

Xem tất cả