Câu hỏi:
03/04/2024 34
Tính đạo hàm của các hàm số sau:
a) y = x4 – 2x2 – 15.
b) y = x.cosx.
c) y = \(\sqrt {{x^2} + 1} \).
Tính đạo hàm của các hàm số sau:
a) y = x4 – 2x2 – 15.
b) y = x.cosx.
c) y = \(\sqrt {{x^2} + 1} \).
Trả lời:
Hướng dẫn giải
a) Ta có y = x4 – 2x2 – 15.
Do đó y' = 4x3 – 4x.
b) Ta có y = x.cosx.
Do đó y' = (x)'.cosx + x.(cosx)' = cosx – x.sinx.
c) Ta có y = \(\sqrt {{x^2} + 1} \)
Do đó y' = \(\frac{{\left( {{x^2} + 1} \right)'}}{{2\sqrt {{x^2} + 1} }} = \frac{{2x}}{{2\sqrt {{x^2} + 1} }} = \frac{x}{{\sqrt {{x^2} + 1} }}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB = BC = \(\frac{1}{2}\)AD = 2a. Cạnh bên SA vuông góc với mặt phẳng đáy là SA = \(2\sqrt 2 a.\)
Chứng minh rằng (SBC) ^ (SAB).
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB = BC = \(\frac{1}{2}\)AD = 2a. Cạnh bên SA vuông góc với mặt phẳng đáy là SA = \(2\sqrt 2 a.\)
Chứng minh rằng (SBC) ^ (SAB).
Câu 3:
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−10;10] sao cho đồ thị hàm số y = \(\frac{1}{3}\)x3 – mx2 + (m + 9)x + 2022 có đúng hai tiếp tuyến với hệ số góc bằng 3?
Câu 4:
Cho hàm số f(x) = x3 – 3x2 – 9x + 5. Tập nghiệm của bất phương trình f '(x) < 0 là
Câu 5:
Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng 2a, cạnh bên bằng nửa cạnh đáy. Tính khoảng cách từ điểm A tới mặt phẳng (A’BC).
Câu 6:
Cho hàm số y = f(x) liên tục trên ℝ và thỏa mãn \(\mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = 2.\) Tính f '(1).
Câu 7:
Tiếp tuyến của đồ thị hàm số y = −x3 + 3x + 2 tại điểm M(2; 0) có hệ số góc bằng
Câu 8:
Tính các giới hạn sau:
\(\mathop {\lim }\limits_{x \to 2} \frac{{5x - 10}}{{{x^2} + x - 6}}\)
Tính các giới hạn sau:
\(\mathop {\lim }\limits_{x \to 2} \frac{{5x - 10}}{{{x^2} + x - 6}}\)
Câu 9:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi. Các mặt phẳng (SAB) và (SAD) cũng vuông góc với đáy. Mặt phẳng (SBD) vuông góc với mặt phẳng nào dưới đây?