Câu hỏi:
03/04/2024 61Cho hàm số f(x) = x3 – 3x2 – 9x + 5. Tập nghiệm của bất phương trình f '(x) < 0 là
A. (−¥; −3) È (1; +¥).
B. (−¥; −1) È (3; +¥).
C. (−3; 1).
D. (−1; 3).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Ta có: f '(x) = 3x2 – 6x – 9
Giải f '(x) < 0 Û 3x2 – 6x – 9 < 0
Û x2 – 2x – 3 < 0 Û −1 < x < 3.
Hướng dẫn giải
Đáp án đúng là: D
Ta có: f '(x) = 3x2 – 6x – 9
Giải f '(x) < 0 Û 3x2 – 6x – 9 < 0
Û x2 – 2x – 3 < 0 Û −1 < x < 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB = BC = \(\frac{1}{2}\)AD = 2a. Cạnh bên SA vuông góc với mặt phẳng đáy là SA = \(2\sqrt 2 a.\)
Chứng minh rằng (SBC) ^ (SAB).
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB = BC = \(\frac{1}{2}\)AD = 2a. Cạnh bên SA vuông góc với mặt phẳng đáy là SA = \(2\sqrt 2 a.\)
Chứng minh rằng (SBC) ^ (SAB).
Câu 3:
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−10;10] sao cho đồ thị hàm số y = \(\frac{1}{3}\)x3 – mx2 + (m + 9)x + 2022 có đúng hai tiếp tuyến với hệ số góc bằng 3?
Câu 4:
Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng 2a, cạnh bên bằng nửa cạnh đáy. Tính khoảng cách từ điểm A tới mặt phẳng (A’BC).
Câu 5:
Cho hàm số y = f(x) liên tục trên ℝ và thỏa mãn \(\mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = 2.\) Tính f '(1).
Câu 6:
Tiếp tuyến của đồ thị hàm số y = −x3 + 3x + 2 tại điểm M(2; 0) có hệ số góc bằng
Câu 7:
Một chất điểm chuyển động thẳng với vận tốc được xác định bởi v(t) = 6t – t2 (m/s), t là thời gian tính bằng giây. Tính vận tốc tức thời của chuyển động tại thời điểm gia tốc triệt tiêu.
Câu 8:
Tính các giới hạn sau:
\(\mathop {\lim }\limits_{x \to 2} \frac{{5x - 10}}{{{x^2} + x - 6}}\)
Tính các giới hạn sau:
\(\mathop {\lim }\limits_{x \to 2} \frac{{5x - 10}}{{{x^2} + x - 6}}\)
Câu 9:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi. Các mặt phẳng (SAB) và (SAD) cũng vuông góc với đáy. Mặt phẳng (SBD) vuông góc với mặt phẳng nào dưới đây?