tính cos góc giữa vecto AC, vecto MN
Ta có: \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) \Rightarrow {\left| {\overrightarrow {MN} } \right|^2} = \frac{1}{4}\left( {{{\overrightarrow {AC} }^2} + 2\overrightarrow {AC} .\overrightarrow {BD} + {{\overrightarrow {BD} }^2}} \right)\)
=14(2a2+2→AC.→BD).
Mà: →AC.→BD=→AC.(→AD−→AB)=→AC.→AD−→AC.→AB
=|→AC|.|→AD|.cos60∘−|→AC|.|→AB|.cos60∘=0.
Suy ra |→MN|2=14.2a2=a22⇒|→MN|=a√22.
Ta có: \(\overrightarrow {AC} .\overrightarrow {MN} = \frac{1}{2}\overrightarrow {AC} .\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) = \frac{1}{2}\left( {{{\overrightarrow {AC} }^2} + \overrightarrow {AC} .\overrightarrow {BD} } \right) = \frac{{{a^2}}}{2}.\)
Khi đó, \(\cos \left( {\overrightarrow {AC} ,\overrightarrow {MN} } \right) = \frac{{\overrightarrow {AC} .\overrightarrow {MN} }}{{\left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {MN} } \right|}} = \frac{{\frac{{{a^2}}}{2}}}{{a.\frac{{a\sqrt 2 }}{2}}} = \frac{{\sqrt 2 }}{2}.\)
Vậy cos(→AC,→MN)=√22.