Tìm tọa độ giao điểm của hai đường thẳng y = x + 2 và y = -3/4x + 3
Tìm tọa độ giao điểm của hai đường thẳng y = x + 2 và \(y = - \frac{3}{4}x + 3.\)
Tìm tọa độ giao điểm của hai đường thẳng y = x + 2 và \(y = - \frac{3}{4}x + 3.\)
Phương trình hoành độ giao điểm là:
\(x + 3 = - \frac{3}{4}x + 3\)
⇔ \(x + \frac{3}{4}x = 3 - 2\)
⇔ \(\frac{7}{4}x = 1\) ⇔ \(x = \frac{4}{7}\)
⇒ \(y = \frac{{18}}{7}.\)
Vậy tọa độ giao điểm cần tìm là \(\left( {\frac{4}{7};\frac{{18}}{7}} \right).\)