Tìm tất cả các giá trị của tham số m để phương trình 9^x - (m - 1) . 3x + 2m = 0 có

Tìm tất cả các giá trị của tham số m để phương trình 9 – (m – 1) . 3 + 2m = 0 có nghiệm duy nhất.

A. \(m = 5 + 2\sqrt 6 \)

B. \(m = 0;m = 5 + 2\sqrt 6 \)

C. \(m < 0;m = 5 \pm 2\sqrt 6 \)

D. \(m < 0;m = 5 + 2\sqrt 6 \).

Trả lời

Đáp án đúng là: D

Đặt t = 3x  > 0, phương trình trở thành t2 (m 1)t + 2m = 0 (*)

Yêu cầu bài toán thành phương trình (*)  có đúng một nghiệm dương

Phương trình (*)  có nghiệm kép dương

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta = 0\\ - \frac{b}{{2a}} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} - 8m = 0\\\frac{{m - 1}}{2} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 10m + 1 = 0\\m > 1\end{array} \right. \Leftrightarrow m = 5 + 2\sqrt 6 \)

Phương trình (*) có hai nghiệm trái dấu 2m < 0 hay m < 0

Suy ra m < 0 hoặc \(m = 5 + 2\sqrt 6 \) thỏa yêu cầu bài toán

Vậy ta chọn đáp án D.

Câu hỏi cùng chủ đề

Xem tất cả