Tìm số tự nhiên n sao cho: a) 3n + 13 chia hết cho n + 1
Bài 108 trang 32 sách bài tập Toán lớp 6 Tập 1: Tìm số tự nhiên n sao cho:
a) 3n + 13 chia hết cho n + 1;
b) 5n + 19 chia hết cho 2n + 1.
Bài 108 trang 32 sách bài tập Toán lớp 6 Tập 1: Tìm số tự nhiên n sao cho:
a) 3n + 13 chia hết cho n + 1;
b) 5n + 19 chia hết cho 2n + 1.
a) Ta có: 3n + 13 = 3n + 3 + 10 = 3.(n + 1) + 10.
Vì 3.(n + 1) chia hết cho n + 1 nên để 3n + 13 chia hết cho n + 1 thì 10 phải chia hết cho n + 1 hay n + 1 là ước của 10.
Ta có: 10 = 2.5 nên các ước của 10 là: Ư(10) = {1; 2; 5; 10}.
Ta có bảng sau:
n + 1 |
1 |
2 |
5 |
10 |
n |
0 |
1 |
4 |
9 |
Vậy n ∈ {0; 1; 4; 9}.
b) 5n + 19 chia hết cho 2n + 1.
Vì 5n + 19 chia hết cho 2n + 1 nên 2(5n + 19) chia hết cho 2n + 1
Xét 2(5n + 19) = 10n + 38 = 10n + 5 + 33 = 5(2n + 1) + 33.
Vì 5.(2n + 1) chia hết cho 2n + 1 nên để 2(5n + 19) chia hết cho 2n + 1 thì 33 phải chia hết cho 2n + 1 hay 2n + 1 thuộc ước của 33.
Ta có bảng sau:
2n + 1 |
1 |
3 |
11 |
33 |
n |
0 |
1 |
5 |
16 |
Vậy n ∈ {0; 1; 5; 16}.
Xem thêm các bài giải SBT Toán lớp 6 Cánh diều hay, chi tiết khác:
Bài 11: Phân tích một số ra thừa số nguyên tố
Bài 12: Ước chung và ước chung lớn nhất