Giải SBT Toán 6 (Cánh diều) Bài ôn tập cuối chương 1

Với giải sách bài tập Toán 6 Bài ôn tập cuối chương 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 6. Mời các bạn đón xem:

Sách bài tập Toán 6 Bài ôn tập cuối chương 1

Bài 128 trang 37 sách bài tập Toán lớp 6 Tập 1: Thực hiện các phép tính:

a) 56:4 + 4.(40 – 25) + 2 000:2 – 15.12;

b) 140.(53 – 53:52) – 36:34 – 15.11.(12 – 9);

c) 784:{300:[536 – (23.3.29 – 174) + 50] + 62};

d) 34 567 – [4.(73 – 69)3 – 82.(102 – 98)]2;

e) 527 + {[2.(2.23 + 32 + 42 – 52) + 6780]3:332}.

Lời giải:

a) 56:4 + 4.(40 – 25) + 2 000:2 – 15.12

= 14 + 4.15 + 1 000 – 180

= 14 + 60 + 1 000 – 180

= 894.

b) 140.(53 – 53:52) – 36:34 – 15.11.(12 – 9)

= 140.(125 – 5) – 32 – 15.11.3

= 140.120 – 9 – 495

= 16 800 – 9 – 495

= 16 296.

c) 784:{300:[536 – (23.3.29 – 174) + 50] + 62}

= 784:{300:[536 – (8.3.29 – 174) + 1] + 36}

= 784:{300:[536 – (696 – 174) + 1] + 36}

= 784:{300:[536 – 522 + 1] + 36}

= 784:{300:15 + 36}

= 784:{20 + 36}

= 784:56

= 14.

d) 34 567 – [4.(73 – 69)3 – 82.(102 – 98)]2

= 34 567 – [4.43 – 82.4]2

= 34 567 – [4.64 – 64.4]2

= 34 567 – [256 – 256]2

= 34 567 – 02

= 34 567.

e) 527 + {[2.(2.23 + 32 + 42 – 52) + 6780]3:332}

= 527 + {[2.(2.8 + 9 + 16 – 25) + 1]3:332}

= 527 + {[2.(16 + 9 + 16 – 25) + 1]3:332}

= 527 + {[2.16 + 1]3:332}

= 527 + {[32 + 1]3:332}

= 527 + {333:332}

= 527 + 33

= 560.

Bài 129 trang 37 sách bài tập Toán lớp 6 Tập 1:

a) 225:15 + 3.(2x + 1) = 270

b) 19.(2 + 3 + 4 – 5 + 6 – 7)2 – 9.(7x – 2) = 0;

c) 3.(2x + 1)3 = 81;

d) (x + 1)5 = 243;

e) 2.11x = (32 + 2)3 : (53 – 25:23).22;

g) 7x + 7x + 1 + 7x + 2 = 3.19.343.

Lời giải:

a) 225:15 + 3.(2x + 1) = 270

15 + 3.(2x + 1) = 270

3.(2x + 1) = 270 – 15 

3.(2x + 1) = 255

2x + 1 = 255:3

2x + 1 = 85

2x = 85 – 1 

2x = 84

x = 84:2

x = 42.

Vậy x = 42.

b) 19.(2 + 3 + 4 – 5 + 6 – 7)2 – 9.(7x – 2) = 0

19.32 – 9(7x – 2) = 0

19.9 – 9(7x – 2) = 0

171 – 9.(7x – 2) = 0

9.(7x – 2) = 171

7x – 2 = 19

7x = 19 + 2

7x = 21

x = 21:7

x = 3.

Vậy x = 3. 

c) 3.(2x + 1)3 = 81;

(2x + 1)3 = 81:3

(2x + 1)3 = 27

(2x + 1)3 = 33

2x + 1 = 3

2x = 3 – 1 

2x = 2

x = 2:2

x = 1.

Vậy x = 1. 

d) (x + 1)5 = 243

(x + 1)5 = 35

x + 1 = 3 

x = 3 – 1

x = 2.

Vậy x = 2.

e) 2.11x = (32 + 2)3 : (53 – 25:23).22

2.11x = (9 + 2)3 : (125 – 22).22

2.11x = 113 : (125 – 4).22

2.11x = 113 : 121.11.2

2.11x = 113 : 112.11.2

2.11x = 11.11.2

2.11x = 112.2

11x = (112.2):2

11x = 112

x = 2.

Vậy x = 2.

g) 7x + 7x + 1 + 7x + 2 = 3.19.343

 7x + 7x.7 + 7.72 = 3.19.343

7x + 7x.7 + 7x.49 = 3.19.343

7x.(1 + 7 + 49) = 57.343

7x.57 = 57.343

7 = 343

7x = 73

x = 3.

Vậy x = 3.

Bài 130 trang 37 sách bài tập Toán lớp 6 Tập 1: Gọi P là tập hợp các số nguyên tố. Chọn kí hiệu '' ∈ ''; '' ∉ '' thích hợp cho Bài 130 trang 37 sách bài tập Toán lớp 6:

a) 12 Bài 130 trang 37 sách bài tập Toán lớp 6 P;                    b) 23 Bài 130 trang 37 sách bài tập Toán lớp 6 P;                             c) 12 + 17 Bài 130 trang 37 sách bài tập Toán lớp 6 P;

d) a Bài 130 trang 37 sách bài tập Toán lớp 6 P với a = 2.4.5 + 13;                                e) b Bài 130 trang 37 sách bài tập Toán lớp 6 với b = 2.3.4.5.37 + 133.37.

Lời giải:

a) Vì 12 có các ước là 1; 2; 3; 4; 12 nhiều hơn 2 ước nên 12 là hợp số. Do đó 12 không thuộc P. Ta viết: 12 Bài 130 trang 37 sách bài tập Toán lớp 6 P

b) Vì 23 chỉ có hai ước là 1 và 23 nên 23 là số nguyên tố. Do đó 23 thuộc P. Ta viết 23 Bài 130 trang 37 sách bài tập Toán lớp 6 P.

c) Ta có 12 + 17 = 29 chỉ có hai ước là 1 và 29 nên 29 là số nguyên tố. Do đó 29 thuộc P. Ta viết 29 Bài 130 trang 37 sách bài tập Toán lớp 6 P

d) Ta có: a = 2.4.5 + 13 = 40 + 13 = 53 chỉ có hai ước là 1 và 53 nên 53 là số nguyên tố hay a là số nguyên tố. Do đó a thuộc P. Ta viết a Bài 130 trang 37 sách bài tập Toán lớp 6 P

e) Ta có: b = 2.3.4.5.37 + 133.37

Vì 2.3.4.5.37 chia hết cho 37, 133.37 chia hết cho 37 nên b chia hết cho 37 mà 1 < 37 < b. Suy ra b có nhiều hơn hai ước. Do đó b không thuộc P. Ta viết b Bài 130 trang 37 sách bài tập Toán lớp 6 P

Bài 131 trang 37 sách bài tập Toán lớp 6 Tập 1: Số tự nhiên A có hai chữ số thỏa mãn A chia cho 9 dư 1 và chia cho 10 dư 3. Khi đó, A chia cho 13 có số dư là bao nhiêu?

Lời giải:

Số tự nhiên có hai chữ số chia cho 9 dư 1 là: 10; 19; 28; 37; 46; 55; 64; 73; 82; 91.

Số tự nhiên có hai chữ số chia cho 10 dư 3 là: 13; 23; 33; 43; 53; 63; 73; 83; 93.

Như vậy chỉ có duy nhất số 73 chia cho 9 dư 1 và chia 10 dư 3. Ta thấy 73 chia 13 dư 8.

Vậy A chia cho 13 có số dư là 8.

Bài 132 trang 37 sách bài tập Toán lớp 6 Tập 1: Mật khẩu ATM của một ngân hàng gồm năm chữ số, mỗi chữ số có thể nhận các giá trị từ 0 đến 9. Có thể có nhiều nhất bao nhiêu mật khẩu, biết rằng không có mật khẩu nào bắt đầu bằng dãy số 7233?

Lời giải:

Nếu không có điều kiện “không có mật khẩu nào bắt đầu bằng dãy số 7233” thì có tất cả 105 mật khẩu. Trong đó, có 10 mật khẩu bắt đầu bằng dãy số 7233.

Vậy có thể có nhiều nhất 105 – 10 = 99 990 mật khẩu không bắt đầu bằng dãy số 7233.

Bài 133 trang 38 sách bài tập Toán lớp 6 Tập 1: Trong một kì Á vận hội có 216 vận động viên tranh tài ở bộ môn chạy 100m. Có 6 đường chạy nên chỉ có 6 vận động viên tranh tài mỗi lượt đua. Kết thúc mỗi lượt đua, 5 người thua cuộc sẽ bị loại và chỉ có duy nhất một người chiến thắng được tham gia ở các vòng đua sau. Cần phải tổ chức bao nhiêu lượt đua để tìm được nhà vô địch?

Lời giải:

Vòng đua thứ nhất sẽ tổ chức: 216:6 = 36 (lượt đua).

Số vận động viên được vào vòng đua thứ hai là: 36 vận động viên.

Vòng đua thứ hai sẽ tổ chức: 36:6 = 6 (lượt đua).

Số vận động viên được vào vòng đua thứ 3 là: 6 vận động viên.

Vòng đua thứ ba sẽ tổ chức: 6:6 = 1 (lượt đua).

Vậy cần phải tổ chức: 36 + 6 + 1 = 43 (lượt đua).

Bài 134 trang 38 sách bài tập Toán lớp 6 Tập 1: Bạn Minh dùng tờ tiền mệnh giá 200 000 đồng để mua một quyển truyện 17 000 đồng. Cô bán hàng có các tờ tiền mệnh giá 50 000 đồng, 20 000 đồng, 10 000 đồng, 5 000 đồng, 2 000 đồng, 1 000 đồng. Bạn Minh nhận được ít nhất bao nhiêu tờ tiền từ cô bán hàng?

Lời giải:

Số tiền cô bán hàng cần trả lại Minh là: 200 000 – 17 000 = 183 000 (đồng).

Muốn bạn Minh nhận được ít số tờ tiền nhất thì cô bán hàng cần phải chọn các đồng tiền có mệnh giá càng lớn (càng nhiều càng tốt) để trả lại. Số tiền 183 000 đồng được chọn để trả như sau: 3 tờ mệnh giá 50 000 đồng, 1 tờ 20 000 đồng, 1 tờ mệnh giá 10 000 đồng, 1 tờ mệnh giá 2 000 đồng và 1 tờ mệnh giá 1 000 đồng.

Vậy bạn Minh nhận được ít nhất 7 tờ tiền.

Bài 135 trang 38 sách bài tập Toán lớp 6 Tập 1: Tìm hai số tự nhiên m, n sao cho: 220m + 1 544n = 105 322.

Lời giải:

Ta có 220 = 4.55 nên 220 chia hết cho 4. Do đó 220m chia hết cho 4.

Ta lại có: 1 544 = 4.386 nên 1 544 chia hết cho 4. Do đó 1 544n chia hết cho 4.

Suy ra 220m + 1 544n chia hết cho 4.

Mà 105 322 không chia hết cho 4.

Vì vậy không tồn tại số tự nhiên m, n thỏa mãn 220m + 1 544n = 105 322.

Bài 136 trang 38 sách bài tập Toán lớp 6 Tập 1: Cho p và p + 4 là các số nguyên tố (p > 3). Chứng tỏ p + 8 là hợp số.

Lời giải:

Do p là số nguyên tố và p > 3 nên p chia 3 dư 1 hoặc p chia cho 3 dư 2; nhưng vì p + 4 là số nguyên tố nên p chia 3 dư 2 loại.

Xét p chia cho 3 dư 1 nên p có dạng p = 3k + 1. Khi đó p + 8 = 3k + 9 = 3.(k + 3) chia hết cho 3 mà p + 8 > 3 nên p + 8 là hợp số (thỏa mãn).

Bài 137 trang 38 sách bài tập Toán lớp 6 Tập 1: Tìm ước chung lớn nhất của:

a) 44 và 121;

b) 18 và 57;

c) 36; 108 và 1 224.

Lời giải:

a) Ta có: 44 = 22.11, 121 = 112.

Tích các thừa số chung với số mũ nhỏ nhất là: 11.

Khi đó ƯCLN(44, 121) = 11.

Vậy ƯCLN(44, 121) = 11.

b) Ta có: 18 = 2.32, 57 = 3.19.

Tích các thừa số chung với số mũ nhỏ nhất là: 3.

Khi đó ƯCLN(18, 57) = 3.

Vậy ƯCLN(18, 57) = 3.

c) Ta có: 36 = 22.32, 108 = 22.33, 1 224 = 23.32.17.

Tích các thừa số chung với số mũ nhỏ nhất là: 22.32.

Khi đó ƯCLN(36,108, 1 224) = 22.32 = 4.9 = 36.

Vậy ƯCLN(36,108, 1 224) = 36.

Bài 138 trang 38 sách bài tập Toán lớp 6 Tập 1: Tìm bội chung nhỏ nhất của:

a) 13 và 338;

b) 321 và 225;

c) 62; 124 và 1 364.

Lời giải:

a) Ta có 13 = 13, 338 = 2.132.

Tích các thừa số chung và riêng với số mũ lớn nhất: 2.132.

Khi đó BCNN(13, 338) = 2.132 = 2.169 = 338.

Vậy BCNN(13, 338) = 338.

b) Ta có: 321 = 3.107, 225 = 32.52.

Tích các thừa số chung và riêng với số mũ lớn nhất là: 32.52.107.

Khi đó BCNN(321, 225) = 32.52.107 = 24 075.

Vậy BCNN(321, 225) = 24 075.

c) Ta có: 62 = 2.31, 124 = 22.31 và 1 364 = 22.11.31.

Tích các thừa số chung và riêng với số mũ lớn nhất là: 22.11.31.

Khi đó BCNN(321, 225) = 22.11.31 = 1 364.

Vậy BCNN(321, 225) = 1 364.

Bài 139 trang 38 sách bài tập Toán lớp 6 Tập 1: Tìm hai số tự nhiên a, b sao cho: a + 2b = 48, a < 24 và ƯCLN(a, b) + 3.BCNN(a, b) = 114.

Lời giải:

Ta có a + 2b = 48; vì 2b, 48 chia hết cho 2. Do đó a chia hết cho 2.

Ta lại có: ƯCLN(a, b) + 3.BCNN(a, b) = 114.

Vì 3.BCNN(a, b) chia hết cho 3, 114 cũng chia hết cho 3 nên ƯCLN(a, b) chia hết cho 3 hay a chia hết cho 3. 

Suy ra a vừa chia hết cho 2, vừa chia hết cho 3 nên a chia hết cho 6 (vì 2 và 3 nguyên tố cùng nhau) hay a là bội của 6. 

Ta có: B(6) = {0; 6; 12; 18; 24; 30; 36; …}.

Do đó, a ∈ {0; 6; 12; 18; 24; 30; 36; …}. .

Vì a < 24 nên a  ∈ {6; 12; 18} .

Ta có bảng sau: 

a

6

12

18

b

21

18

15

ƯCLN(a,b)

3

6

3

BCNN(a, b)

42

36

90

ƯCLN(a, b) + 3.BCNN(a, b) 

129 (loại)

114 (thỏa mãn)

273 (loại)

Vậy a = 12, b = 18 thỏa mãn yêu cầu bài toán.

Bài 140 trang 38 sách bài tập Toán lớp 6 Tập 1: Hầu hết các ngọn núi cao nhất thế giới đều thuộc dãy Himalaya và dãy Karakoram, nằm ở vùng biên giới giữa các nước Ấn Độ, Trung Quốc, Pakistan và Nepal.Sau đây là danh sách tám ngọn núi cao nhất thế giới:

Tên núi

Độ cao (m)

Vị trí

Everest

8 848

Nepal

Manaslu

8 163

Nepal

K2

8 611

Pakistan

Dhaulagiri

8 167

Nepal

Cho Oyu

8 188

Nepal – Trung Quốc

Lhotse

8 516

Nepal – Trung Quốc

Makalu

8 463

Nepal – Trung Quốc

Kangchenjunga

8 586

Nepal – Ấn Độ

a) Viết tập hợp A gồm bốn ngọn núi cao nhất thế giới trong danh sách trên.

b) Sắp xếp tám ngọn núi trong danh sách theo thứ tự độ cao giảm dần.

c) Viết tập hợp B gồm các ngọn núi có độ cao lớn hơn 8 400m.

Lời giải:

a) Bốn ngọn núi cao nhất thế giới trong danh sách trên là: Everest; K2; Lhotse; Kangchenjunga.

Khi đó, A = {Everest; K2; Lhotse; Kangchenjunga}.

Vậy A = {Everest; K2; Lhotse; Kangchenjunga}.

b) Vì 8 848 > 8 611 > 8 586 > 8 463 > 8 188 > 8 167 > 8 163 nên độ các ngọn núi có độ cao giảm dần được sắp xếp như sau: Everest; K2; Kangchenjunga; Lhotse; Makalu; Cho Oyu; Dhaulagiri; Manaslu.

c) Các ngọn núi có độ cao hơn 8 400 m là: Everest; K2; Kangchenjunga; Lhotse; Makalu.

Xem thêm các bài giải SBT Toán 6 Cánh diều hay, chi tiết khác:

Bài 12: Ước chung và ước chung lớn nhất

Bài 13: Bội chung và bội chung nhỏ nhất

Bài 1: Số nguyên âm

Bài 2: Tập hợp các số nguyên

Bài 3: Phép cộng các số nguyên

Câu hỏi liên quan

Do p là số nguyên tố và p > 3 nên p chia 3 dư 1 hoặc p chia cho 3 dư 2; nhưng vì p + 4 là số nguyên tố nên p chia 3 dư 2 loại.
Xem thêm
Ta có a + 2b = 48; vì 2b, 48 chia hết cho 2. Do đó a chia hết cho 2.
Xem thêm
Vậy có thể có nhiều nhất 105 – 10 = 99 990 mật khẩu không bắt đầu bằng dãy số 7233.
Xem thêm
Số tự nhiên có hai chữ số chia cho 9 dư 1 là: 10; 19; 28; 37; 46; 55; 64; 73; 82; 91.
Xem thêm
Vậy ƯCLN(36,108, 1 224) = 36.
Xem thêm
a) Ta có 13 = 13,
Xem thêm
Vòng đua thứ nhất sẽ tổ chức: 216:6 = 36 (lượt đua).
Xem thêm
Số tiền cô bán hàng cần trả lại Minh là: 200 000 – 17 000 = 183 000 (đồng).
Xem thêm
a) Bốn ngọn núi cao nhất thế giới trong danh sách trên là: Everest; K2; Lhotse; Kangchenjunga.
Xem thêm
Ta có 220 = 4.55 nên 220 chia hết cho 4. Do đó 220m chia hết cho 4.
Xem thêm
Xem tất cả hỏi đáp với chuyên mục: Bài ôn tập cuối chương 1
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!