Tìm nguyên hàm F (x) của hàm số f (x)  6x + sin 3x, biết F(0) = 2/3

Tìm nguyên hàm F (x) của hàm số f (x) = 6x + sin 3x, biết \(F\left( 0 \right) = \frac{2}{3}\).

Trả lời

Do f (x) = 6x + sin 3x nên nguyên hàm F (x) của hàm số f (x) là:

\(F\left( x \right) = \int {f\left( x \right)dx} = \int {\left( {6x + \sin 3x} \right)dx} = 3{x^2} - \frac{{\cos 3x}}{3} + C\)

\(F\left( 0 \right) = \frac{2}{3} \Rightarrow - \frac{1}{3} + C = \frac{2}{3} \Leftrightarrow C = 1\).

Vậy nguyên hàm F (x) của hàm số f (x) = 6x + sin 3x là \(F\left( x \right) = 3{x^2} - \frac{{\cos 3x}}{3} + 1\).

Câu hỏi cùng chủ đề

Xem tất cả