Tìm năm số hạng liên tiếp của một cấp số cộng, biết tổng của chúng bằng 40 và tổng bình

Tìm năm số hạng liên tiếp của một cấp số cộng, biết tổng của chúng bằng 40 và tổng bình phương của chúng bằng 480.

Trả lời

Gọi số hạng nhỏ nhất trong các số cần tìm là u và công sai của cấp số cộng là d.

Khi đó, năm số hạng liên tiếp là u, u + d, u + 2d, u + 3d, u + 4d.

Vì tổng của chúng bằng 40 nên u + u + d + u + 2d + u + 3d + u + 4d = 40

5u + 10d = 40 u + 2d = 8.

u = 8 – 2d. (1)

Lại có tổng bình phương của chúng bằng 480 nên

u2 + (u + d)2 + (u + 2d)2 + (u + 3d)2 + (u + 4d)2 = 480. (2)

Thế (1) vào (2) ta được:

(8 – 2d)2 + (8 – 2d + d)2 + (8 – 2d + 2d)2 + (8 – 2d + 3d)2 + (8 – 2d + 4d)2 = 480

(8 – 2d)2 + (8 – d)2 + 82 + (8 + d)2 + (8 + 2d)2 = 480

64 – 32d + 4d2 + 64 – 2d + d2 + 64 + 64 + 2d + d2 + 64 + 32d + 4d2 = 480

10d2 + 320 = 480

10d2 = 160

d2 = 16

d = ±4

+ Với d = 4, ta có u = 8 – 2 . 4 = 0.

+ Với d = – 4, ta có u = 8 – 2 . (– 4) = 16.

Vậy năm số hạng liên tiếp cần tìm là 0, 4, 8, 12, 16.

Câu hỏi cùng chủ đề

Xem tất cả