Tìm m để phương trình log 2^2( x ) - log 2( x^2) + 3 = m có nghiệm x [1; 8].
Tìm m để phương trình \(\log _2^2\left( x \right) - {\log _2}\left( {{x^2}} \right) + 3 = m\) có nghiệm x Î [1; 8].
Lời giải
ĐK: x > 0
\(\log _2^2\left( x \right) - {\log _2}\left( {{x^2}} \right) + 3 = m\)
\( \Leftrightarrow \log _2^2\left( x \right) - 2{\log _2}\left( x \right) + 3 = m\)
Đặt t = log2 x. Với x Î [1; 8] Þ t Î [0; 3]
Phương trình đã cho trở thành:
t2 − 2t + 3 = m
Xét bảng biến thiên:
Để phương trình có nghiệm x phân biệt thuộc khoảng [1; 8] thì có nghiệm t phân biệt thuộc khoảng t Î [0; 3]
Þ m Î [2; 6].
Vậy m Î [2; 6] là giá trị của m thỏa mãn.