Tìm m để phương trình x^3 – 2x^2 + (1 – m)x + m = 0 có 3 nghiệm phân biệt x1, x2, x3
Tìm m để phương trình x3 – 2x2 + (1 – m)x + m = 0 có 3 nghiệm phân biệt x1, x2, x3 thỏa mãn x12 + x22 + x32 = 4.
Tìm m để phương trình x3 – 2x2 + (1 – m)x + m = 0 có 3 nghiệm phân biệt x1, x2, x3 thỏa mãn x12 + x22 + x32 = 4.
x3 – 2x2 + (1 – m)x + m = 0 (*)
⇔ (x3 – 2x2 + x) – mx + m = 0
⇔ x(x2 – 2x + 1) – m(x – 1) = 0
⇔ x(x – 1)2 – m(x – 1) = 0
⇔ (x – 1)[(x(x – 1) – m] = 0
⇔ (x – 1)(x2 – x – m) = 0
⇔
Để phương trình (*) có 3 nghiệm phân biệt thì phương trình (1) có 2 nghiệm phân biệt khác 1. Tức là:
⇔ ⇔
Ta có nghiệm của phương trình (1) là:
Suy ra: x12 + x22 =
Có x12 + x22 + x32 = 4
⇔ 1 + 2m + 1 = 4
⇔ m = 1 (thỏa mãn)
Vậy m = 1.