Câu hỏi:

29/12/2023 77

Tìm hệ số của x5 trong khai triển (1 + x + x2 + x3)5.

A. 50;

B. 100;

C. 101;

Đáp án chính xác

D. 200.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

\[{\left( {1 + x + {x^2} + {x^3}} \right)^5} = {\left[ {\left( {1 + x} \right) + {x^2}\left( {1 + x} \right)} \right]^5} = {\left[ {\left( {1 + {x^2}} \right)\left( {1 + x} \right)} \right]^5}\]

Áp dụng khai triển nhị thức Newton ta có:

\({\left( {1 + {x^2}} \right)^5} = C_5^0{.1^5} + C_5^1{.1^4}.{\left( {{x^2}} \right)^1} + C_5^2{.1^3}.{\left( {{x^2}} \right)^2} + C_5^3{.1^2}.{\left( {{x^2}} \right)^3} + C_5^4.1.{\left( {{x^2}} \right)^4} + C_5^5.{\left( {{x^2}} \right)^5}\)

\({\left( {1 + x} \right)^5} = C_5^0{.1^5} + C_5^1{.1^4}.{x^1} + C_5^2{.1^3}.{x^2} + C_5^3{.1^2}.{x^3} + C_5^4.1.{x^4} + C_5^5.{x^5}\)

Xét \[{\left[ {\left( {1 + {x^2}} \right)\left( {1 + x} \right)} \right]^5}\] = \({\left( {1 + {x^2}} \right)^5}\).\({\left( {1 + x} \right)^5}\) để có x5 thì (x2)i.xj = x5 hay x2i + j = x5 với i; j là số tự nhiên và i; j bé hơn 5.

i

j

0

5

1

3

2

1

Khi đó, số hạng chứa x5 trong khai triển là:

\(C_5^0{.1^5}.C_5^5{x^5} + C_5^1{.1^4}.{x^2}.C_5^3{.1^2}.{x^3} + C_5^2{.1^3}.{x^4}.C_5^1{.1^4}.x\) = x5 + 50x5 + 50x5 = 101x5

Vậy hệ số của x5 trong khai triển là 101.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \({\left( {x\sqrt x + \frac{1}{{{x^4}}}} \right)^n}\)với x > 0 và \(C_n^2 - C_n^1 = 2\). Số hạng có số mũ thấp nhất của khai triển là:

Xem đáp án » 29/12/2023 89

Câu 2:

Gọi Tk là số hạng thứ k trong khai triển (x3 + 2y2)5 mà số mũ của x và y bằng nhau. Hệ số của Tk là:

Xem đáp án » 29/12/2023 82

Câu 3:

Cho n > 2 là số nguyên dương thỏa mãn \(3C_n^2 + 2A_n^2 = 3{n^2} - 5.\) Số hạng không chứa x trong khai triển \({\left( {2{x^3} - \frac{3}{{{x^2}}}} \right)^n},x \ne 0.\)

Xem đáp án » 29/12/2023 76

Câu 4:

Khai triển \({(\sqrt 3 - \sqrt[4]{5})^5}\). Tổng các số hạng hữu tỉ trong khai triển trên?

Xem đáp án » 29/12/2023 75

Câu hỏi mới nhất

Xem thêm »
Xem thêm »