Tìm GTLN, GTNN của hàm số: y = sin^2 x + cosx + 2

Tìm GTLN, GTNN của hàm số: y = sin2 x + cosx + 2

Trả lời

Ta có: y = sin2 x + cosx + 2

= 1 − cos2 x + cosx + 2

= −cos2 x + cosx + 3

\( = - \left( {{{\cos }^2}x - \cos x + \frac{1}{4}} \right) + \frac{{13}}{4}\)

\( = - {\left( {\cos x - \frac{1}{2}} \right)^2} + \frac{{13}}{4}\)

Do −1 ≤ cos x ≤ 1

\( \Rightarrow - \frac{3}{2} \le \cos x - \frac{1}{2} \le \frac{1}{2}\)

\( \Rightarrow 0 \le {\left( {\cos x - \frac{1}{2}} \right)^2} \le \frac{9}{4}\)

\( \Rightarrow - \frac{9}{4} \le - {\left( {\cos x - \frac{1}{2}} \right)^2} \le 0\)

\( \Rightarrow 1 \le - {\left( {\cos x - \frac{1}{2}} \right)^2} + \frac{{13}}{4} \le \frac{{13}}{4}\)

+) min y = 1

Dấu “=” xảy ra Û x =p + k2p, (k Î ℤ)

+) \(\max y = \frac{{13}}{4}\)

Dấu “=” xảy ra \( \Leftrightarrow x = \pm \frac{\pi }{3} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right)\)

Vậy GTNN của hàm số là 1 khi x =p + k2p, (k Î ℤ) và GTLN của hàm số là \(\frac{{13}}{4}\) khi \(x = \pm \frac{\pi }{3} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right)\).

Câu hỏi cùng chủ đề

Xem tất cả