Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số: y = căn bậc hai (1 + cos 2x)) + 3

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số:

\(y = \sqrt {1 + \cos 2x} + 3\);

Trả lời

\(y = \sqrt {1 + \cos 2x} + 3\)

Ta có: x ℝ, thì – 1 ≤ cos 2x ≤ 1 nên 0 ≤ 1 + cos 2x ≤ 2. (*)

Do đó, tập xác định của hàm số là ℝ.

Từ (*) suy ra \(0 \le \sqrt {1 + \cos 2x} \le \sqrt 2 \) x ℝ. Do đó \(3 \le \sqrt {1 + \cos 2x} + 3 \le 3 + \sqrt 2 \) x ℝ.

Vậy giá trị lớn nhất của hàm số đã cho bằng \(3 + \sqrt 2 \) khi cos 2x = 1 hay x = kπ (k ℤ); giá trị nhỏ nhất của hàm số bằng 3 khi cos 2x = − 1 hay \(x = \frac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Câu hỏi cùng chủ đề

Xem tất cả