Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số: y = 1 / (4 - sin x)

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số:

\(y = \frac{1}{{4 - \sin x}}\).

Trả lời

\(y = \frac{1}{{4 - \sin x}}\)

Tập xác định của hàm số là ℝ.

Ta có: x ℝ, thì – 1 ≤ sin x ≤ 1. Do đó, 3 ≤ 4 – sin x ≤ 5. Suy ra \(\frac{1}{3} \ge \frac{1}{{4 - \sin x}} \ge \frac{1}{5}\).

Khi đó \(\frac{1}{5} \le y \le \frac{1}{3}\) x ℝ.

Vậy giá trị lớn nhất của hàm số bằng \(\frac{1}{3}\) khi sin x = 1 hay \(x = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\); giá trị nhỏ nhất của hàm số bằng \(\frac{1}{5}\) khi sin x = − 1 hay \(x = - \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Câu hỏi cùng chủ đề

Xem tất cả