Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng: y = sin x trên khoảng (-19pi/2; -17pi/2)

Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:

y = sin x trên khoảng \(\left( { - \frac{{19\pi }}{2};\, - \frac{{17\pi }}{2}} \right),\,\,\left( { - \frac{{13\pi }}{2};\, - \frac{{11\pi }}{2}} \right)\);

Trả lời

+ Ta có: \(\left( { - \frac{{19\pi }}{2};\, - \frac{{17\pi }}{2}} \right)\)\( = \left( {\frac{\pi }{2} - 10\pi ;\,\frac{{3\pi }}{2} - 10\pi } \right)\).

Do hàm số y = sin x nghịch biến trên khoảng \(\left( {\frac{\pi }{2};\,\frac{{3\pi }}{2}} \right)\) nên hàm số đó cũng nghịch biến trên khoảng \(\left( { - \frac{{19\pi }}{2};\, - \frac{{17\pi }}{2}} \right)\).

+ Ta có: \(\,\left( { - \frac{{13\pi }}{2};\, - \frac{{11\pi }}{2}} \right) = \left( { - \frac{\pi }{2} - 6\pi ;\,\frac{\pi }{2} - 6\pi } \right)\).

Do hàm số y = sin x đồng biến trên khoảng \(\left( { - \frac{\pi }{2};\,\,\frac{\pi }{2}} \right)\) nên hàm số đó cũng đồng biến trên khoảng \(\,\left( { - \frac{{13\pi }}{2};\, - \frac{{11\pi }}{2}} \right)\).

Câu hỏi cùng chủ đề

Xem tất cả