Tìm giá trị của x để phân thức A chia hết cho phân thức B biết:  A = x^3 - x^2 - x + 11/x - 2; B = x + 2/x - 2. A. { - 3; - 1} B. { - 3; 1} C. { - 1; 3} D. { 1; 3}

Tìm giá trị của x để phân thức A chia hết cho phân thức B biết: 

\(A = \frac{{{x^3} - {x^2} - x + 11}}{{x - 2}};\,\,B = \frac{{x + 2}}{{x - 2}}\).

A. \(\left\{ { - 3;\,\, - 1} \right\}\)
B. \(\left\{ { - 3;\,\,1} \right\}\)
C. \(\left\{ { - 1;\,\,3} \right\}\)
D. \(\left\{ {1;\,\,3} \right\}\)

Trả lời

Lời giải

Đáp án đúng là: A

\(A:B = \frac{{{x^3} - {x^2} - x + 11}}{{x - 2}}:\frac{{x + 2}}{{x - 2}} = \frac{{{x^3} - {x^2} - x + 11}}{{x - 2}} \cdot \frac{{x - 2}}{{x + 2}}\)

\( = \frac{{{x^3} - {x^2} - x + 11}}{{x + 2}} = \frac{{{x^3} + 2{x^2} - 3{x^2} - 6x + 5x + 10 + 1}}{{x + 2}}\)

\( = \frac{{{x^2}\left( {x + 2} \right) - 3x\left( {x + 2} \right) + 5\left( {x + 2} \right) + 1}}{{x + 2}}\)

\( = \frac{{\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) + 1}}{{x + 2}} = {x^2} - 3x + 5 + \frac{1}{{x + 2}}\).

Để phân thức A chia hết cho phân thức B thì \[\frac{{\rm{A}}}{{\rm{B}}} \in \mathbb{Z}\].

Suy ra \(\left( {{x^2} - 3x + 5 + \frac{1}{{x + 2}}} \right) \in \mathbb{Z}\)

Mà \(\left( {{x^2} - 3x + 5} \right) \in \mathbb{Z}\,\,\,\forall x \in \mathbb{Z}\) hay \(\left( {x + 2} \right) \in U\left( 1 \right) = \left\{ { \pm \,1} \right\}\)

\(\left[ {\begin{array}{*{20}{c}}{x + 2 = - 1}\\{x + 2 = 1}\end{array}} \right.\)

\(\left[ {\begin{array}{*{20}{c}}{x = - 3}\\{x = - 1}\end{array}\,\,} \right.\,(TM)\)

Câu hỏi cùng chủ đề

Xem tất cả