Câu hỏi:

01/02/2024 40

Tam giác ABC có trung tuyến CI bằng nửa cạnh AB. Số đo góc ACB là:

A. 90°;

Đáp án chính xác

B. 60°;

C. 45°;

D. 30°.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Media VietJack

Ta có CI = \(\frac{1}{2}\)AB (giả thiết), IA = IB (vì I là trung điểm của AB).

Nên AI = BI = CI

Xét DIBC có IB = IC nên tam giác IBC cân tại I.

Suy ra \(\widehat {ICB} = \widehat {IBC}\)

Xét DIAC có IA = IC nên tam giác IAC cân tại I

Suy ra \(\widehat {ICA} = \widehat {IAC}\)

Xét DABC có \(\widehat {ABC} + \widehat {BAC} + \widehat {ACB} = 180^\circ \) (tổng ba góc trong một tam giác)

Hay \(\widehat {IBC} + \widehat {IAC} + \widehat {ICB} + \widehat {ICA} = 180^\circ \)

\(\widehat {ICB} = \widehat {IBC}\),\(\widehat {ICA} = \widehat {IAC}\) (chứng minh trên)

Suy ra \(2(\widehat {ICB} + \widehat {ACI}) = 180^\circ \)

Do đó \(\widehat {ACB} = 180^\circ :2 = 90^\circ \)

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A có trung tuyến BD và CE cắt nhau tại G. Khẳng định nào sau đây là sai?

Xem đáp án » 01/02/2024 46

Câu 2:

Cho ∆ABC có AD, BE, CF là ba đường trung tuyến và trọng tâm G.

Cho các phát biểu sau:

(I) \[AD + BE + CF > \frac{3}{4}\left( {AB + BC + AC} \right)\];                 

(II) AD + BE + CF < AB + BC + AC.

Chọn khẳng định đúng:

Xem đáp án » 01/02/2024 40

Câu hỏi mới nhất

Xem thêm »
Xem thêm »