Câu hỏi:

01/02/2024 47

Cho tam giác ABC cân tại A có trung tuyến BD và CE cắt nhau tại G. Khẳng định nào sau đây là sai?

A. AG là đường trung trực của ED;

B. GD + GE < \(\frac{1}{2}\)BC;

Đáp án chính xác

C. BD = CE;

D. DB = 3EG.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Media VietJack

Vì D là trung điểm của AC nên AD = DC = \(\frac{1}{2}\)AC.

Vì E là trung điểm của AB nên AE = EB = \(\frac{1}{2}\)AB.

Mà AB = AC (do DABC cân tại A)

Suy ra AE = AD = BE = CD. Do đó phương án C là đúng.

Xét DEBC và DDCB có:

BE = CD (chứng minh trên),

\(\widehat {DCB} = \widehat {EBC}\)(do DABC cân tại A),

BC là cạnh chung

Do đó DEBC = DDCB (c.g.c)

Suy ra EC = BD (hai cạnh tương ứng)

Xét DABC có trung tuyến BD và CE cắt nhau tại G nên G là trọng tâm tam giác ABC.

Suy ra EG = \(\frac{1}{3}\)CE và GD = \(\frac{1}{3}\)BD

Mà BD = EC (chứng minh trên) nên EG = \(\frac{1}{3}\)BD hay BD = 3EG

Do đó phương án D là đúng.

• Ta có EG = \(\frac{1}{3}\)CE và GD = \(\frac{1}{3}\)BD

Mà BD = EC nên EG = GD.

Suy ra G nằm trên đường trung trực của ED.

Lại có AE = AD nên A cũng nằm trên đường trung trực của ED.

Do đó AG là đường trung trực của ED nên phương án A là đúng.

Xét DBCG, theo bất đẳng thức trong tam giác ta có:

BG + CG > BC

Suy ra \(\frac{1}{2}\)BG + \(\frac{1}{2}\)CG > \(\frac{1}{2}\)BC

Mà GD = \(\frac{1}{2}\)BG, GE = \(\frac{1}{2}\)CG (do G là trọng tâm tam giác ABC).

Do đó GD + GE > \(\frac{1}{2}\)BC nên phương án B là sai.

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tam giác ABC có trung tuyến CI bằng nửa cạnh AB. Số đo góc ACB là:

Xem đáp án » 01/02/2024 40

Câu 2:

Cho ∆ABC có AD, BE, CF là ba đường trung tuyến và trọng tâm G.

Cho các phát biểu sau:

(I) \[AD + BE + CF > \frac{3}{4}\left( {AB + BC + AC} \right)\];                 

(II) AD + BE + CF < AB + BC + AC.

Chọn khẳng định đúng:

Xem đáp án » 01/02/2024 40

Câu hỏi mới nhất

Xem thêm »
Xem thêm »