Câu hỏi:
19/01/2024 69
Số học sinh giỏi của 30 lớp ở một trường Trung học phổ thông được ghi lại trong bảng sau:
0
2
1
0
0
3
0
0
1
1
0
1
6
6
0
1
5
2
4
5
1
0
1
2
4
0
3
3
1
0
Tìm khoảng tứ phân vị ∆Q của mẫu số liệu trên.
Số học sinh giỏi của 30 lớp ở một trường Trung học phổ thông được ghi lại trong bảng sau:
0 |
2 |
1 |
0 |
0 |
3 |
0 |
0 |
1 |
1 |
0 |
1 |
6 |
6 |
0 |
1 |
5 |
2 |
4 |
5 |
1 |
0 |
1 |
2 |
4 |
0 |
3 |
3 |
1 |
0 |
Tìm khoảng tứ phân vị ∆Q của mẫu số liệu trên.
A. 0
B. 1
C. 2
D. 3
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
- Vì cỡ mẫu n = 30 = 2.15 là số chẵn.
Do đó giá trị tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 15 và số liệu thứ 16.
Ta có bảng tần số sau:
Số học sinh giỏi
0
1
2
3
4
5
6
Tần số
10
8
3
3
2
2
2
n = 30
Theo bảng tần số trên thì số liệu thứ 15 và số liệu thứ 16 cùng bằng 1.
Do đó ta có Q2 = 1.
- Ta tìm tứ phân vị thứ nhất là trung vị của nửa mẫu số liệu bên trái Q2.
Ta có cỡ mẫu lúc này n = 15 = 2.7 + 1 là số lẻ.
Nên giá trị tứ phân vị thứ nhất là số liệu thứ 8.
Do đó Q1 = 0.
- Ta tìm tứ phân vị thứ ba là trung vị của nửa mẫu số liệu bên phải Q2.
Ta có cỡ mẫu lúc này n = 15 = 2.7 + 1.
Nên giá trị tứ phân vị thứ ba là số liệu thứ 8 tính từ số liệu thứ 16 trở đi. Tức là giá trị tứ phân vị thứ ba là số liệu thứ 23 của mẫu dữ liệu ban đầu.
Do đó Q3 = 3.
Ta suy ra khoảng tứ phân vị ∆Q = Q3 – Q1 = 3 – 0 = 3.
Vậy ta chọn đáp án D.
Hướng dẫn giải
Đáp án đúng là: D
- Vì cỡ mẫu n = 30 = 2.15 là số chẵn.
Do đó giá trị tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 15 và số liệu thứ 16.
Ta có bảng tần số sau:
Số học sinh giỏi |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
|
Tần số |
10 |
8 |
3 |
3 |
2 |
2 |
2 |
n = 30 |
Theo bảng tần số trên thì số liệu thứ 15 và số liệu thứ 16 cùng bằng 1.
Do đó ta có Q2 = 1.
- Ta tìm tứ phân vị thứ nhất là trung vị của nửa mẫu số liệu bên trái Q2.
Ta có cỡ mẫu lúc này n = 15 = 2.7 + 1 là số lẻ.
Nên giá trị tứ phân vị thứ nhất là số liệu thứ 8.
Do đó Q1 = 0.
- Ta tìm tứ phân vị thứ ba là trung vị của nửa mẫu số liệu bên phải Q2.
Ta có cỡ mẫu lúc này n = 15 = 2.7 + 1.
Nên giá trị tứ phân vị thứ ba là số liệu thứ 8 tính từ số liệu thứ 16 trở đi. Tức là giá trị tứ phân vị thứ ba là số liệu thứ 23 của mẫu dữ liệu ban đầu.
Do đó Q3 = 3.
Ta suy ra khoảng tứ phân vị ∆Q = Q3 – Q1 = 3 – 0 = 3.
Vậy ta chọn đáp án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Số điện năng tiêu thụ của 10 hộ ở một khu dân cư trong một tháng như sau:
165
85
65
65
70
50
45
100
45
100
Khoảng tứ phân vị của mẫu số liệu trên bằng:
Số điện năng tiêu thụ của 10 hộ ở một khu dân cư trong một tháng như sau:
165 |
85 |
65 |
65 |
70 |
50 |
45 |
100 |
45 |
100 |
Khoảng tứ phân vị của mẫu số liệu trên bằng:
Câu 2:
Số cuộn phim mà 20 nhà nhiếp ảnh nghiệp dư sử dụng trong một tháng được cho trong bảng sau:
0
5
7
6
2
5
9
7
6
9
20
6
10
7
5
8
9
7
8
5
Giá trị ngoại lệ trong mẫu số liệu trên là:
Số cuộn phim mà 20 nhà nhiếp ảnh nghiệp dư sử dụng trong một tháng được cho trong bảng sau:
0 |
5 |
7 |
6 |
2 |
5 |
9 |
7 |
6 |
9 |
20 |
6 |
10 |
7 |
5 |
8 |
9 |
7 |
8 |
5 |
Giá trị ngoại lệ trong mẫu số liệu trên là:
Câu 4:
Số tiền nước phải nộp (đơn vị: nghìn đồng) của 5 hộ gia đình là: 56; 45; 103; 239; 125. Độ lệch chuẩn gần bằng:
Số tiền nước phải nộp (đơn vị: nghìn đồng) của 5 hộ gia đình là: 56; 45; 103; 239; 125. Độ lệch chuẩn gần bằng:
Câu 5:
Cho dãy số liệu thống kê sau: 1; 2; 3; 4; 5; 6; 7; 8; 9. Phương sai và độ lệch chuẩn của mẫu số liệu trên lần lượt là:
Cho dãy số liệu thống kê sau: 1; 2; 3; 4; 5; 6; 7; 8; 9. Phương sai và độ lệch chuẩn của mẫu số liệu trên lần lượt là:
Câu 7:
Bảng sau đây cho ta biết số cuốn sách mà học sinh của một lớp ở trường Trung học phổ thông đã đọc:
Số sách
1
2
3
4
5
6
Số học sinh đọc
10
m
8
6
n
3
n = 40
Tìm m và n, biết phương sai của mẫu số liệu trên xấp xỉ 2,52.
Bảng sau đây cho ta biết số cuốn sách mà học sinh của một lớp ở trường Trung học phổ thông đã đọc:
Số sách |
1 |
2 |
3 |
4 |
5 |
6 |
|
Số học sinh đọc |
10 |
m |
8 |
6 |
n |
3 |
n = 40 |
Tìm m và n, biết phương sai của mẫu số liệu trên xấp xỉ 2,52.
Câu 8:
Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:
21
17
22
18
20
17
15
13
15
20
15
12
18
17
25
17
21
15
12
18
16
23
14
18
19
13
16
19
18
17
Khoảng biến thiên R của mẫu số liệu trên là:
Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:
21 |
17 |
22 |
18 |
20 |
17 |
15 |
13 |
15 |
20 |
15 |
12 |
18 |
17 |
25 |
17 |
21 |
15 |
12 |
18 |
16 |
23 |
14 |
18 |
19 |
13 |
16 |
19 |
18 |
17 |
Khoảng biến thiên R của mẫu số liệu trên là:
Câu 10:
Điểm trung bình một số môn học của hai bạn An và Bình trong năm học vừa qua được cho trong bảng sau:
Môn
Điểm của An
Điểm của Bình
Toán
Vật Lý
Hóa học
Sinh học
Ngữ Văn
Lịch sử
Địa lý
Giáo dục thể chất
8,0
7,5
7,8
8,3
7,0
8,0
8,2
9,0
8,5
9,5
9,5
8,5
5,0
5,5
6,0
9,0
Hỏi ai “học lệch” hơn?
Điểm trung bình một số môn học của hai bạn An và Bình trong năm học vừa qua được cho trong bảng sau:
Môn |
Điểm của An |
Điểm của Bình |
Toán Vật Lý Hóa học Sinh học Ngữ Văn Lịch sử Địa lý Giáo dục thể chất |
8,0 7,5 7,8 8,3 7,0 8,0 8,2 9,0 |
8,5 9,5 9,5 8,5 5,0 5,5 6,0 9,0 |
Hỏi ai “học lệch” hơn?
Câu 11:
Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm x1 ≤ x2 ≤ x3 ≤ ... ≤ xn. Khi đó khoảng biến thiên R của mẫu số liệu bằng:
Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm x1 ≤ x2 ≤ x3 ≤ ... ≤ xn. Khi đó khoảng biến thiên R của mẫu số liệu bằng:
Câu 12:
Nhiệt độ của 24 tỉnh thành ở Việt Nam (đơn vị: °C) vào một ngày của tháng 7 được cho trong bảng sau đây:
36
30
31
32
31
40
37
29
41
37
35
34
34
35
32
33
35
33
33
31
34
34
32
35
Khoảng biến thiên R của bảng số liệu trên là
Nhiệt độ của 24 tỉnh thành ở Việt Nam (đơn vị: °C) vào một ngày của tháng 7 được cho trong bảng sau đây:
36 |
30 |
31 |
32 |
31 |
40 |
37 |
29 |
41 |
37 |
35 |
34 |
34 |
35 |
32 |
33 |
35 |
33 |
33 |
31 |
34 |
34 |
32 |
35 |
Khoảng biến thiên R của bảng số liệu trên là
Câu 13:
Hai lớp 10A và 10B của một trường Trung học phổ thông cùng làm bài thi môn Toán, chung một đề thi. Kết quả thi được trình bày ở hai bảng tần số sau đây:
Lớp 10A:
Điểm
3
5
6
7
8
9
10
Số học sinh
7
9
3
3
7
12
4
n = 45
Lớp 10B:
Điểm
4
5
6
7
8
9
10
Số học sinh
6
6
7
8
9
5
4
n = 45
Lớp nào có kết quả thi đồng đều hơn?
Hai lớp 10A và 10B của một trường Trung học phổ thông cùng làm bài thi môn Toán, chung một đề thi. Kết quả thi được trình bày ở hai bảng tần số sau đây:
Lớp 10A:
Điểm |
3 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Số học sinh |
7 |
9 |
3 |
3 |
7 |
12 |
4 |
n = 45 |
Lớp 10B:
Điểm |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Số học sinh |
6 |
6 |
7 |
8 |
9 |
5 |
4 |
n = 45 |
Lớp nào có kết quả thi đồng đều hơn?