Rút gọn tổng sau: S = C n 1 + 2 C n 2 + 3 C n 3 + + n C n n ta được A. S = n.2^n

Rút gọn tổng sau: \(S = C_n^1 + 2C_n^2 + 3C_n^3 + ... + nC_n^n\) ta được:

A. S = n . 2n

B. S = 2n+1

C. S = n. 2n-1

D. S = 2n-1.

Trả lời

Đáp án đúng là: C

Ta có \(kC_n^k = k.\frac{{n!}}{{k!\left( {n - k} \right)!}} = \frac{{n\left( {n - 1} \right)!}}{{\left( {k - 1} \right)!\left[ {n - 1 - \left( {k - 1} \right)} \right]!}} = nC_{n - 1}^{k - 1}\)

Khi đó: \(S = C_n^1 + 2C_n^2 + 3C_n^3 + ... + nC_n^n\)

\(S = nC_{n - 1}^0 + nC_{n - 1}^1 + ... + nC_{n - 1}^{n - 1}\)

\(S = n\left( {C_{n - 1}^0 + C_{n - 1}^1 + ... + C_{n - 1}^{n - 1}} \right)\)

Ta có: \({\left( {a + b} \right)^{n - 1}} = C_{n - 1}^0.{a^{n - 1}} + C_{n - 1}^1.{a^{n - 2}}b + C_{n - 1}^2{a^{n - 3}}{b^2} + ... + C_{n - 1}^{n - 1}.{b^{n - 1}}\)

Thay a = 1,b = 1 vào biểu thức ta được

\({2^{n - 1}} = C_{n - 1}^0 + C_{n - 1}^1 + ... + C_{n - 1}^{n - 1}\)

Suy ra \(S = n\left( {C_{n - 1}^0 + C_{n - 1}^1 + ... + C_{n - 1}^{n - 1}} \right) = n{.2^{n - 1}}\)

Vậy ta chọn đáp án C.

Câu hỏi cùng chủ đề

Xem tất cả