Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm toạ độ tâm

Bài 1 trang 69 SBT Toán 10 Tập 2: Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm toạ độ tâm và bán kính của đường tròn đó.

a) x2 + y2 + 2x + 2y – 9 = 0;

b) x2 + y2 – 6x – 2y + 1 = 0;

c) x2 + y2 + 8x + 4y + 2022 = 0;

d) 3x2 + 2y2 + 5x + 7y – 1 = 0.

Trả lời

a) x2 + y2 + 2x + 2y – 9 = 0 (1)

Phương trình (1) có dạng x2 + y2 – 2ax – 2by + c = 0 với a = – 1; b = – 1; c = – 9

Ta có a2 + b2 – c = (–  1)2 + (–  1)2 – (–  9) = 11 > 0

Vậy (1) là phương trình đường tròn tâm I(– 1; –  1) bán kính R = 11 .

b) x2 + y2 – 6x – 2y + 1 = 0 (2)

Phương trình (2) có dạng x2 + y2 – 2ax – 2by + c = 0 với a = 3; b = 1; c = 1

Ta có a2 + b2 – c = 32 + 12 – 1 = 9 > 0

Vậy (2) là phương trình đường tròn tâm I(3; 1) bán kính R = 3

c) x2 + y2 + 8x + 4y + 2022 = 0 (3)

Phương trình (3) có dạng x2 + y2 – 2ax – 2by + c = 0 với a = – 4; b = – 2; c = 2022

Ta có a2 + b2 – c = (– 4)2 + (– 2)2 – 2022 = – 2002 < 0

Vậy (3) không là phương trình đường tròn.

d) 3x2 + 2y2 + 5x + 7y – 1 = 0 (4)

Phương trình (4) không phải là phương trình đường tròn vì không thể đưa về dạng (x – a)2 + (y – b)2 = R2 hoặc dạng x2 + y2 – 2ax – 2by + c = 0.

Xem thêm các bài giải SBT Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Tọa độ của vectơ

Bài 2: Đường thẳng trong mặt phẳng tọa độ

Bài 3: Đường tròn trong mặt phẳng tọa độ

Bài 4: Ba đường conic trong mặt phẳng tọa độ

Bài tập cuối chương 9

Bài 1: Không gian mẫu và biến cố

Câu hỏi cùng chủ đề

Xem tất cả