Phương trình (m + 2)  𝑥^2  – 3x + 2m – 3 = 0 có hai nghiệm trái dấu khi và chỉ khi A. m < –2

Bài 6.49 trang 25 SBT Toán 10 Tập 2: Phương trình (m + 2) x2 – 3x + 2m – 3 = 0 có hai nghiệm trái dấu khi và chỉ khi

A. m < –2 hoặc m>32;

B. m>32;

C. 2<m<32;

D. m < 2.

Trả lời

Đáp án đúng là: C

Phương trình (m + 2) x2 – 3x + 2m – 3 = 0 có hai nghiệm trái dấu khi và chỉ khi

ac < 0

⇔ (m + 2)(2m – 3) < 0

 ⇔ 2m2 – 3m + 4m – 6 < 0

⇔ 2m2 + m – 6 < 0

Xét tam thức f(x) = 2m2 + m – 6 có:

a = 2 > 0

Δ = 12 – 4.1.(–6) = 25 > 0

f(x) = 2m2 + m – 6  = 0 có hai nghiệm là: x1 = –2; x2 = 32.

Do đó, 2m2 + m – 6 < 0 ⇔ –2 < x < 32 

Vậy phương trình (m + 2) x2 – 3x + 2m – 3 = 0 có hai nghiệm trái dấu khi và chỉ khi 2<m<32.

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 17: Dấu của tam thức bậc hai

Bài 18: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 6

Bài 19: Phương trình đường thẳng

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Bài 21: Đường tròn trong mặt phẳng tọa độ

Câu hỏi cùng chủ đề

Xem tất cả