Phát biểu nào sau đây là sai? A. lim 1/2^b = 0 B. lim (3/2)^n = 0 C. lim 1/ (căn bậc hai 2)^n
19
04/08/2024
Phát biểu nào sau đây là sai?
A. \(\lim \frac{1}{{{2^n}}} = 0\).
B. \(\lim {\left( {\frac{3}{2}} \right)^n} = 0\).
C. \(\lim \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}} = 0\).
D. \(\lim {\left( { - \frac{{\sqrt 3 }}{2}} \right)^n} = 0\).
Trả lời
Đáp án đúng là: B
Vì limqn = 0 với |q| < 1 nên ta có:
\(\lim \frac{1}{{{2^n}}} = \lim {\left( {\frac{1}{2}} \right)^n} = 0\) do \(\left| {\frac{1}{2}} \right| < 1\);
\(\lim \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}} = \lim {\left( {\frac{1}{{\sqrt 2 }}} \right)^n} = 0\) do \(\left| {\frac{1}{{\sqrt 2 }}} \right| < 1\);
\(\lim {\left( { - \frac{{\sqrt 3 }}{2}} \right)^n} = 0\) do \(\left| { - \frac{{\sqrt 3 }}{2}} \right| < 1\).
Vậy các đáp án A, C, D đúng.
Vì \(\left| {\frac{3}{2}} \right| > 1\) nên \(\lim {\left( {\frac{3}{2}} \right)^n} \ne 0\), do đó đáp án B sai.