Tính các giới hạn sau: lim ((n^3 - 5n + 1) / (3n^2 - 4n + 2))
Tính các giới hạn sau:
\(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}}\);
Tính các giới hạn sau:
\(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}}\);
\(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}}\)\( = \lim \frac{{{n^3}\left( {1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( {\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}} \right)}}\)\( = \lim \frac{{1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}}}\)
\( = \frac{{\lim \left( {1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{\lim \left( {\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}} \right)}} = + \infty \) (do \(\lim \left( {1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}} \right) = 1\) và \(\lim \left( {\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}} \right) = 0\)).