Ông A dự định sử dụng hết 5m2 kính để làm bể cá bằng kính có dạng hình hộp chữ

Ông A dự định sử dụng hết 5m2 kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có thể tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?

Trả lời
Ông A dự định sử dụng hết 5m2 kính để làm bể cá bằng kính có dạng hình hộp chữ  (ảnh 1)

Gọi chiều dài, chiều rộng và chiều cao của bể cá lần lượt là a, b, c (a, b, c > 0).

Theo đề bài ta có a = 2b

Vì ông A dự định sử dụng hết 5m2 kính để làm bể cá không nắp nên diện tích toàn phần (bỏ 1 mặt đáy) của hình hộp là: ab + 2bc + 2ac

Hay ab + 2bc + 2ac = 5.

Mà a = 2b nên 2b2 + 2bc + 4bc = 5

Û 2b2 + 6bc = 5

\( \Rightarrow c = \frac{{5 - 2{b^2}}}{{6b}}\).

Xét điều kiện c > 0 \( \Rightarrow \frac{{5 - 2{b^2}}}{{6b}} > 0 \Rightarrow 5 - 2{b^2} > 0\)

\( \Rightarrow 0 < b < \sqrt {\frac{5}{2}} \).

Thể tích bể cá là:

\(V = abc = 2b\,.\,b\,.\,\frac{{5 - 2{b^2}}}{{6b}} = \frac{{ - 2{b^3} + 5b}}{3}\).

Xét hàm số \(f\left( b \right) = \frac{{ - 2{b^3} + 5b}}{3}\;\left( {b > 0} \right)\)

\( \Rightarrow f'\left( b \right) = \frac{{ - 6{b^2} + 5}}{3} = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}b = - \sqrt {\frac{5}{6}} \;\left( {KTM} \right)\\b = \sqrt {\frac{5}{6}} \;\;\;\left( {TM} \right)\end{array} \right.\)

Xét bảng biến thiên:

Ông A dự định sử dụng hết 5m2 kính để làm bể cá bằng kính có dạng hình hộp chữ  (ảnh 2)

Yêu cầu bài toán suy ra \(\max f\left( b \right) = \frac{{5\sqrt {30} }}{{27}} \Leftrightarrow b = \sqrt {\frac{5}{6}} \).

Vậy bể cá có thể tích lớn nhất bằng \[\frac{{5\sqrt {30} }}{{27}} \approx 1,01\;\left( {{m^3}} \right)\].

Câu hỏi cùng chủ đề

Xem tất cả