Câu hỏi:
21/12/2023 134Nhân dịp lẽ sơ kết học kỳ 1, để thưởng cho 3 học sinh có thành tích cao nhất cô Nguyệt đã mua 10 cuốn sách khác nhau và chọn ngẫu nhiên 3 cuốn để phát thưởng cho 3 bạn. Hỏi cô Nguyệt có bao nhiêu cách phát thưởng.
A.\(C_{10}^3\);
B. 3!;
C. \(A_{10}^3\);
D. 10!.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Chọn ra 3 cuốn sách khác nhau ta có \(C_{10}^3\) cách chọn.
Sau đó mang 3 cuốn sách đã chọn đi phát thưởng cho 3 bạn ta có 3! cách sắp xếp (do các cuốn sách khác nhau).
Do đó, cô Nguyệt có số cách phát thưởng là: \(C_{10}^3\). 3! = \(A_{10}^3\) cách phát thưởng.
Hướng dẫn giải
Đáp án đúng là: C
Chọn ra 3 cuốn sách khác nhau ta có \(C_{10}^3\) cách chọn.
Sau đó mang 3 cuốn sách đã chọn đi phát thưởng cho 3 bạn ta có 3! cách sắp xếp (do các cuốn sách khác nhau).
Do đó, cô Nguyệt có số cách phát thưởng là: \(C_{10}^3\). 3! = \(A_{10}^3\) cách phát thưởng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trên giá sách có 3 quyển sách toán; 4 quyển sách văn và 5 quyển sách tiếng Anh (xem các quyển sách là đôi một khác nhau). Bạn Nguyên muốn lấy 3 quyển sách trên giá sách. Hỏi bạn Nguyên có bao nhiêu cách lấy ba quyển sách đó.
Câu 2:
Một cái hộp gồm có 10 bóng xanh và 8 bóng đỏ (các quả bóng đôi một khác nhau). Chọn trong hộp ra hai quả bóng. Có bao nhiêu cách để chọn được hai quả bóng khác màu.
Câu 3:
Một tổ có 6 học sinh nam và 9 học sinh nữ. Hỏi có bao nhiêu cách chọn 6 học sinh đi sự kiện, trong đó có 2 học sinh nam.
Câu 4:
Trong kho có 5 bóng đèn lọai I và 7 bóng đèn loại 2 đều khác nhau về hình dáng và màu sắc. Lấy ra 5 bóng đèn bất kỳ. Hỏi có bao nhiêu khả năng xảy ra số bóng đèn loại I nhiều hơn số bóng đèn loại II?
Câu 5:
Một tổ có 12 học sinh trong đó có một học sinh tên Châu. Có bao nhiêu cách chọn một nhóm gồm 5 người trong đó có học sinh Châu đi làm trực nhật?
Câu 6:
Có 6 bông hoa hồng, 5 bông hoa cúc và 6 bông hướng dương (các bông hoa xem nhưu đôi một khác nhau). Có bao nhiêu cách lấy ra 3 bông hoa mà 3 bông hoa đó cùng loại.
Câu 7:
Một hộp chứa bút có 15 bút bi xanh và 12 bút bi đen (xem như các bút là đôi một khác nhau). Có bao nhiêu cách chọn 2 bút bi sao cho 2 bút chọn được cùng màu nhau.