Câu hỏi:
19/01/2024 62
Nghiệm của tam thức bậc hai f(x) = –2x2 + 4x – 2 là:
Nghiệm của tam thức bậc hai f(x) = –2x2 + 4x – 2 là:
A. x = 1;
A. x = 1;
Đáp án chính xác
B. x = 1 hoặc x = –1;
B. x = 1 hoặc x = –1;
C. x = –1;
D. f(x) vô nghiệm.
Trả lời:
Giải bởi Vietjack
Hướng dẫn giải
Đáp án đúng là: A
Tam thức bậc hai f(x) = –2x2 + 4x – 2 có ∆ = 42 – 4.(–2).(–2) = 0.
Do đó f(x) có nghiệm kép .
Vậy f(x) có nghiệm là x = 1.
Do đó ta chọn phương án A.
Hướng dẫn giải
Đáp án đúng là: A
Tam thức bậc hai f(x) = –2x2 + 4x – 2 có ∆ = 42 – 4.(–2).(–2) = 0.
Do đó f(x) có nghiệm kép .
Vậy f(x) có nghiệm là x = 1.
Do đó ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho f(x) = ax2 + bx + c (a ≠ 0) và ∆ = b2 – 4ac. Khi f(x) luôn cùng dấu với hệ số a, với mọi x ∈ ℝ thì:
Cho f(x) = ax2 + bx + c (a ≠ 0) và ∆ = b2 – 4ac. Khi f(x) luôn cùng dấu với hệ số a, với mọi x ∈ ℝ thì:
Xem đáp án »
19/01/2024
80
Câu 2:
Cho tam thức f(x) = ax2 + bx + c (a ≠ 0), có ∆ = b2 – 4ac. Ta có f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:
Cho tam thức f(x) = ax2 + bx + c (a ≠ 0), có ∆ = b2 – 4ac. Ta có f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:
Xem đáp án »
19/01/2024
77
Câu 3:
Cho f(x) = (3m – 2)x2 – 2(3m – 2)x + 3(2m + 1). Đa thức f(x) là tam thức bậc hai khi và chỉ khi:
Cho f(x) = (3m – 2)x2 – 2(3m – 2)x + 3(2m + 1). Đa thức f(x) là tam thức bậc hai khi và chỉ khi:
Xem đáp án »
19/01/2024
72
Câu 4:
Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0). Khẳng định nào sau đây đúng?
Xem đáp án »
19/01/2024
65
Câu 6:
Biệt thức và biệt thức thu gọn của tam thức bậc hai f(x) = –x2 – 4x – 6 lần lượt là:
Biệt thức và biệt thức thu gọn của tam thức bậc hai f(x) = –x2 – 4x – 6 lần lượt là:
Xem đáp án »
19/01/2024
50