Câu hỏi:
18/12/2023 102
Nghiệm của phương trình \[\sqrt {x - 2} + \sqrt {x + 3} = 5\] là
Nghiệm của phương trình \[\sqrt {x - 2} + \sqrt {x + 3} = 5\] là
A. x = 2;
A. x = 2;
B. x = 4;
B. x = 4;
C. x = 5;
C. x = 5;
D. x = 6.
D. x = 6.
Trả lời:
Đáp án đúng là: D
Điều kiện của phương trình: \[\left\{ \begin{array}{l}x - 2 \ge 0\\x + 3 \ge 0\end{array} \right. \Leftrightarrow x \ge 2\]
\[\sqrt {x - 2} + \sqrt {x + 3} = 5\]
\[ \Leftrightarrow \left\{ \begin{array}{l}x \ge 2\\x - 2 + x + 3 + 2\sqrt {(x - 2)(x + 3)} = 25\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}x \ge 2\\\sqrt {{x^2} + x - 6} = 12 - x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 \le x \le 12\\{x^2} + x - 6 = {x^2} - 24x + 144\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}2 \le x \le 12\\25x - 150 = 0\end{array} \right. \Leftrightarrow x = 6\].
Đáp án đúng là: D
Điều kiện của phương trình: \[\left\{ \begin{array}{l}x - 2 \ge 0\\x + 3 \ge 0\end{array} \right. \Leftrightarrow x \ge 2\]
\[\sqrt {x - 2} + \sqrt {x + 3} = 5\]
\[ \Leftrightarrow \left\{ \begin{array}{l}x \ge 2\\x - 2 + x + 3 + 2\sqrt {(x - 2)(x + 3)} = 25\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}x \ge 2\\\sqrt {{x^2} + x - 6} = 12 - x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 \le x \le 12\\{x^2} + x - 6 = {x^2} - 24x + 144\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}2 \le x \le 12\\25x - 150 = 0\end{array} \right. \Leftrightarrow x = 6\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho parabol (P): y = ax2 + bx + c có đồ thị như hình bên. Phương trình của parabol này là :
Cho parabol (P): y = ax2 + bx + c có đồ thị như hình bên. Phương trình của parabol này là :
Câu 2:
Cho hàm số y = ax2 + bx + c có đồ thị như hình sau:
Kết luận nào sau đây đúng về hệ số a, b:
Cho hàm số y = ax2 + bx + c có đồ thị như hình sau:
Kết luận nào sau đây đúng về hệ số a, b:
Câu 3:
Cho hàm số y = f(x) có đồ thị như hình sau:
Hàm số đồng biến trên khoảng
Cho hàm số y = f(x) có đồ thị như hình sau:
Hàm số đồng biến trên khoảng
Câu 5:
Cho parabol (P): y = ax2 + bx + 1. Xác định (P) biết rằng parabol đi qua hai điểm A(1; 4) và B(– 1; 2).
Cho parabol (P): y = ax2 + bx + 1. Xác định (P) biết rằng parabol đi qua hai điểm A(1; 4) và B(– 1; 2).
Câu 9:
Tổng các nghiệm của phương trình \[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7\] là:
Tổng các nghiệm của phương trình \[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7\] là:
Câu 10:
Cho bất phương trình 2x2 – 4x + m + 5 > 0. Tìm m để bất phương trình đúng \(\forall x \ge 3\)?
Cho bất phương trình 2x2 – 4x + m + 5 > 0. Tìm m để bất phương trình đúng \(\forall x \ge 3\)?
Câu 11:
Cho f(x) = mx2 – 2x – 1. Xác định m để f(x) < 0 với mọi x ∈ ℝ.
Cho f(x) = mx2 – 2x – 1. Xác định m để f(x) < 0 với mọi x ∈ ℝ.
Câu 13:
Đồ thị hàm số y = 4x2 – 3x – 1 có dạng nào trong các dạng sau đây?
Đồ thị hàm số y = 4x2 – 3x – 1 có dạng nào trong các dạng sau đây?
Câu 15:
Tập xác định của hàm số \[y = \frac{{x - 1}}{{{x^2} - x + 3}}\] là
Tập xác định của hàm số \[y = \frac{{x - 1}}{{{x^2} - x + 3}}\] là