Một trường có 50 học sinh giỏi trong đó có 4 cặp anh em sinh đôi. Cần chọn ra 3 học sinh
17
02/09/2024
Một trường có 50 học sinh giỏi trong đó có 4 cặp anh em sinh đôi. Cần chọn ra 3 học sinh trong số 50 học sinh để tham dự trại hè. Tính xác suất trong 3 em ấy không có cặp anh em sinh đôi?
Trả lời
Số cách chọn ra 3 học sinh mà không có điều kiện gì là \[C_{50}^3 \Rightarrow n\Omega = C_{50}^3.\]
Gọi biến cố A: “Chọn ra 3 em học sinh mà trong 3 em ấy không có cặp anh em sinh đôi”.
Vì chọn ra 3 học sinh thì không thể có đến hai cặp anh em sinh đôi. Ta sẽ trừ đi các trường hợp có 1 cặp anh em sinh đôi.
Đầu tiên ta chọn 1 cặp sinh đôi: Có 4 cách chọn.
Sau đó chọn 1 học sinh còn lại từ 48 học sinh: Có 48 cách chọn
Do đó số cách chọn 3 em học sinh thỏa yêu cầu đề bài là:
\[C_{50}^3 - 4.48 = 19\,\,408\] (cách)
\[ \Rightarrow {n_A} = 19\,\,408\]
Vậy xác suất của biến cố A là \[P\left( A \right) = \frac{{19\,\,408}}{{C_{50}^3}} = \frac{{1\,\,213}}{{1\,\,225}}.\]