Một nhóm 30 bệnh nhân có 24 người điều trị bệnh X, có 12 người điều trị cả bệnh X và bệnh Y, có 26 người điều trị ít nhất một trong hai bệnh X hoặc Y. Chọn ngẫu nhiên một bệnh nhân. Tính xác
24
17/10/2024
Một nhóm 30 bệnh nhân có 24 người điều trị bệnh X, có 12 người điều trị cả bệnh X và bệnh Y, có 26 người điều trị ít nhất một trong hai bệnh X hoặc Y. Chọn ngẫu nhiên một bệnh nhân. Tính xác suất để người đó:
a) Điều trị bệnh Y.
Trả lời
Gọi biến cố A: “Người đó điều trị bệnh X”.
Biến cố B: “Người đó điều trị bệnh Y”.
Biến cố A È B: “Người đó điều trị ít nhất một trong hai bệnh X hoặc Y”.
Biến cố ˉAB : “Người đó điều trị bệnh Y và không điều trị bệnh X”.
Biến cố ˉAˉB : “Người đó không điều trị cả hai bệnh X và Y”.
Ta có: P(A)=2430 ;P(AB)=1230 ; P(A∪B)=2630 .
a) Ta cần tính P(B).
Ta có P(A È B) = P(A) + P(B) – P(AB) nên
P(B) = P(A È B) − P(A) + P(AB) = =2630−2430+1230=1430=715 .
Vậy xác suất để người đó điều trị bệnh Y là 715 .