Một nhà máy sản xuất các hộp hình trụ kín cả hai đầu có thể tích V cho trước. Mối quan hệ giữa bán kính đáy R và chiều cao h của hình trụ để diện tích toàn phần của hình trụ nhỏ nhất là?

Một nhà máy sản xuất các hộp hình trụ kín cả hai đầu có thể tích V cho trước. Mối quan hệ giữa bán kính đáy R và chiều cao h của hình trụ để diện tích toàn phần của hình trụ nhỏ nhất là?

Trả lời

Lời giải

Thể tích của khối trụ là \(V = \pi {R^2}h \Rightarrow h = \frac{V}{{\pi {R^2}}}\).

Diện tích toàn phần của hình trụ là

Ta có: \(\pi {R^2} + \frac{V}{R} = \pi {R^2} + \frac{V}{{2R}} + \frac{V}{{2R}} \ge 3\sqrt[3]{{\pi {R^2}\,.\,\frac{V}{{2R}}\,.\,\frac{V}{{2R}}}} = 3\sqrt[3]{{\frac{{\pi {V^2}}}{4}}}\).

Dấu “=” xảy ra khi \(\pi {R^2} = \frac{V}{{2R}} \Leftrightarrow R = \sqrt[3]{{\frac{V}{{2\pi }}}} \Rightarrow h = 2\sqrt[3]{{\frac{V}{{2\pi }}}}\).

Vậy h = 2R.

Câu hỏi cùng chủ đề

Xem tất cả