Một bảng giá cước taxi được cho như sau: Giá mở cửa (0,5 km đầu) Giá cước các km tiếp theo đến 30 km Giá cước từ km thứ 31 10 000 đồng 13 500 đồng 11 000 đồng   a) Viết

Một bảng giá cước taxi được cho như sau:

Giá mở cửa

(0,5 km đầu)

Giá cước các km tiếp theo đến 30 km

Giá cước từ km thứ 31

10 000 đồng

13 500 đồng

11 000 đồng

 a) Viết công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển.

b) Xét tính liên tục của hàm số ở câu a.

Trả lời

Lời giải:

a) Gọi x (km, x > 0) là quãng đường khách di chuyển và y (đồng) là số tiền khách phải trả theo quãng đường di chuyển x.  

Với x ≤ 0,5, ta có y = 10 000.

Với 0,5 < x ≤ 30, ta có: y = 10 000 + 13 500(x – 0,5) hay y = 13 500x + 3 250.

Với x > 30, ta có: y = 10 000 + 13 500 . 29,5 + 11 000(x – 30) hay y = 11 000x + 78 250.

Vậy công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển là

\(y = \left\{ \begin{array}{l}10\,000,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 < x \le 0,5\\13\,500x + 3\,250,\,\,\,\,\,\,\,\,0,5 < x \le 30\\11\,000x + \,78\,250,\,\,\,\,\,x > 30\end{array} \right.\) .

b) +) Với 0 < x < 0,5 thì y = 10 000 là hàm hằng nên nó liên tục trên (0; 0,5).

+) Với 0,5 < x < 30 thì y = 13500x + 3 250 là hàm đa thức nên nó liên tục trên (0,5; 30).

+) Với x > 30 thì y = 11 000x + 78 250 là hàm đa thức nên nó liên tục trên (30; +∞).

+) Ta xét tính liên tục của hàm số tại x = 0,5 và x = 30.

- Tại x = 0,5, ta có y(0,5) = 10 000;

\(\mathop {\lim }\limits_{x \to {{0,5}^ - }} y = \mathop {\lim }\limits_{x \to {{0,5}^ - }} 10\,\,000 = 10\,000\);

\(\mathop {\lim }\limits_{x \to {{0,5}^ + }} y = \mathop {\lim }\limits_{x \to {{0,5}^ + }} \left( {13\,\,500x + 3250} \right)\)= 13 500 . 0,5 + 3 250 = 10 000.

Do đó, \(\mathop {\lim }\limits_{x \to {{0,5}^ - }} y = \mathop {\lim }\limits_{x \to {{0,5}^ + }} y = \mathop {\lim }\limits_{x \to 0,5} y = y\left( {0,5} \right)\) nên hàm số liên tục tại x = 0,5.

- Tại x = 30, ta có: y(30) = 13 500 . 30 + 3 250 = 408 250;

\(\mathop {\lim }\limits_{x \to {{30}^ - }} y = \mathop {\lim }\limits_{x \to {{30}^ - }} \left( {13\,\,500x + 3250} \right)\) = 13 500 . 30 + 3 250 = 408 250;

\(\mathop {\lim }\limits_{x \to {{30}^ + }} y = \mathop {\lim }\limits_{x \to {{30}^ + }} \left( {11\,\,000x + 78\,250} \right)\) = 11 000 . 30 + 78 250 = 408 250.

Do đó, \(\mathop {\lim }\limits_{x \to {{30}^ - }} y = \mathop {\lim }\limits_{x \to {{30}^ + }} y = \mathop {\lim }\limits_{x \to 30} y = y\left( {30} \right)\) nên hàm số liên tục tại x = 30.

Vậy hàm số ở câu a liên tục trên (0; +∞).

Câu hỏi cùng chủ đề

Xem tất cả