Gọi S là tập tất cả các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số y = | 1/4x^4 - 19/2x^2 + 30x + m - 20| trên đoạn [0; 2] không vượt quá 20. Tổng các phần tử của S bằng
Lời giải
Xét hàm số \(f\left( x \right) = \frac{1}{4}{x^4} - \frac{{19}}{2}{x^2} + 30x + m - 20\) trên đoạn [0; 2]
Þ f ¢(x) = x3 − 19x + 30 = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = - 5 \notin \left[ {0;\;2} \right]\\x = 2 \in \left[ {0;\;2} \right]\\x = 3 \notin \left[ {0;\;2} \right]\end{array} \right.\)
Bảng biến thiên:
Với f (0) = m − 20; f (2) = m + 6
Xét hàm số \(y = \frac{1}{4}{x^4} - \frac{{19}}{2}{x^2} + 30x + m - 20\) trên đoạn [0; 2]
• TH1: m − 20 ≥ 0 Û m ≥ 20
Ta có:
\(\mathop {\max }\limits_{\left[ {0;\;2} \right]} y = m + 6 \le 20 \Leftrightarrow m \le 14\)
Kết hợp m ≥ 20 suy ra không có giá trị m.
• TH2: m + 6 ≥ 20 − m Û m ≥ 7
Ta có:
\(\mathop {\max }\limits_{\left[ {0;\;2} \right]} y = m + 6 \le 20 \Leftrightarrow m \le 14\)
Kết hợp m ≥ 20 suy ra 7 £ m £ 14.
Vì m nguyên nên m Î {7; 8; 9; 10; 11; 12; 13; 14}.
• TH3: m + 6 £ 20 − m Û m £ 7
Ta có:
\(\mathop {\max }\limits_{\left[ {0;\;2} \right]} y = 20 - m \le 20 \Leftrightarrow m \ge 0\)
Kết hợp m £ 7 suy ra 0 £ m £ 7.
Vì m nguyên nên m Î {0; 1; 2; 3; 4; 5; 6; 7}.
Do đó S = {0; 1; 2; …; 14}.
Vậy tổng các phần tử của S bằng \(\frac{{\left( {14 + 0} \right)\,.\,15}}{2} = 105\).