Gọi S là tập tất cả các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số y = | 1/4x^4 - 14x^2 + 48x + m - 30| trên đoạn [0; 2] không vượt quá 30. Tính tổng các phần tử của S.
Lời giải
Đặt \(f\left( x \right) = \frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30\) là hàm số xác định và liên tục trên đoạn [0; 2]
Ta có: f ¢(x) = x3 − 28x + 48
Với mọi x Î [0; 2] ta có f ¢(x) = x3 − 28x + 48 = 0 Û x = 2
Mặt khác: f (0) = m − 30; f (x) = m + 14.
\(\mathop {\max }\limits_{\left[ {0;\;2} \right]} \left| {f\left( x \right)} \right| = \max \left\{ {\left| {f\left( 0 \right)} \right|;\;\left| {f\left( 2 \right)} \right|} \right\}\)
Theo bài ra ta có: \[\mathop {\max }\limits_{\left[ {0;\;2} \right]} \left| {f\left( x \right)} \right| \le 30 \Leftrightarrow \left\{ \begin{array}{l}\left| {f\left( 0 \right)} \right| \le 30\\\left| {f\left( 2 \right)} \right| \le 30\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}\left| {m - 30} \right| \le 30\\\left| {m + 14} \right| \le 30\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 30 \le m - 30 \le 30\\ - 30 \le m + 14 \le 30\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}0 \le m \le 60\\ - 44 \le m \le 16\end{array} \right. \Leftrightarrow 0 \le m \le 16\]
Do m Î ℤ Þ m Î S = {0; 1; 2; 3; 4; 5; …; 16}
Vậy tổng tất cả 17 giá trị trong tập S là \(\frac{{17\,.\,\left( {0 + 16} \right)}}{2} = 136\)