Gọi M là tập hợp các số tự nhiên gồm 9 chữ số khác nhau. Chọn ngẫu nhiên một số từ M, tính xác suất để số được chọn có đúng 4 chữ số lẻ và chữ số 0 đứng giữa hai chữ số lẻ (các chữ số liền tr
Lời giải
Xét các số có 9 chữ số khác nhau
- Có 9 cách chọn chữ số ở vị trí đầu tiên
- Có \(A_9^8\) cách chọn 8 chữ số tiếp theo
Do đó số các số có 9 chữ số khác nhau là: \(9\,.\,A_9^8 = 3265920\)
Xét các số thỏa mãn đề bài:
- Có \(C_5^4\) cách chọn 4 chữ số lẻ
- Đầu tiên ta xếp vị trí cho chữu số 0, do chữ số 0 không thể đứng đầu và cuối nên có 7 cách xếp
- Tiếp theo ta có \(A_4^2\) cách chọn và xếp hai chữ số lẻ đứng hai bên chữ số 0
- Cuối cùng ta có 6! Cách xếp 6 chữ số còn lại vào 6 vị trí còn lại.
Gọi A là biến cố đã cho, khi đó \(n\left( A \right) = C_5^4\,\,.\,\,7\,\,.\,\,A_4^2\,\,.\,\,6! = 302\,\,400\).
Vậy xác suất cần tìm là \(P\left( A \right) = \frac{{302\,\,400}}{{3\,\,265\,\,920}} = \frac{5}{{54}}\).