Giải phương trình: 3log3 (1 + căn bậc hai x + căn bậc ba x) = 2 log 2 (căn bậc hai x)
Giải phương trình: \(3{\log _3}\left( {1 + \sqrt x + \sqrt[3]{x}} \right) = 2{\log _2}\left( {\sqrt x } \right).\)
Giải phương trình: \(3{\log _3}\left( {1 + \sqrt x + \sqrt[3]{x}} \right) = 2{\log _2}\left( {\sqrt x } \right).\)
Đặt \({\log _2}x = 6t\) ⇒ x = 26t.
Thay vào phương trình ta có:
\(3{\log _3}\left( {1 + {2^{3t}} + {2^{2t}}} \right) = 2{\log _2}\left( {{2^{3t}}} \right) = 6t\)
⇔ \({\log _3}\left( {1 + {2^{3t}} + {2^{2t}}} \right) = 2t\)
⇔ \(1 + {2^{3t}} + {2^{2t}} = {3^{2t}}\)
⇔ \({\left( {\frac{1}{9}} \right)^t} + {\left( {\frac{8}{9}} \right)^t} + {\left( {\frac{4}{9}} \right)^t} = 1\) (chia cả 2 vế cho 32t)
Xét hàm số \(f\left( t \right) = {\left( {\frac{1}{9}} \right)^t} + {\left( {\frac{8}{9}} \right)^t} + {\left( {\frac{4}{9}} \right)^t} - 1\).
Ta thấy f(2) = 0.
Vì f(t) là hàm nghịch biến nên phương trình f(t) = 0 có 1 nghiệm duy nhất.
Suy ra t = 2 là nghiệm duy nhất.
Ta có: t = 2 ⇔ \({\log _2}x = 6.2 = 12\)
⇒ \(x = {2^{12}} = 4096\)
Vậy phương trình có nghiệm duy nhất x = 4096.